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Curvilinear Co-ordinates

• (x, y, s), often called the standard co-ordinate system in
accelerator physics

• The origin is defined by the vector ~S(s) following the ideal
reference path

• x = r − ρ s = ρθ

• X = r sin θ = (ρ+x) sin θ, Y = y, Z = r cos θ = (ρ+x) cos θ
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Transverse Equation of Motion - 1

• Start with the basics

Fx = m
d2r

dt2
− mv2

r

= m
d2(x+ ρ)

dt2
− mv2

x+ ρ
= −eByv (1)

• Factorise the equation

m
d2x

dt2
− mv2

ρ

(
1 +

x

ρ

)−1

= −eByv (2)

• Utilise the binomial approximation

m
d2x

dt2
− mv2

ρ

(
1− x

ρ

)
= −eByv (3)
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Transverse Equation of Motion - 2

• Replace t with s and rearrange

mv2 d2x

ds2
− mv2

ρ

(
1− x

ρ

)
= −eByv (4)

d2x

ds2
− 1

ρ

(
1− x

ρ

)
= −eBy

mv
(5)

• Consider small displacements in x

d2x

ds2
− 1

ρ

(
1− x

ρ

)
= − e

mv

(
B0 + x

∂By
∂x

)
(6)
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Transverse Equation of Motion - 3

• Set field gradient, g =
∂By

∂x

d2x

ds2
− 1

ρ

(
1− x

ρ

)
= −eB0

mv
− exg

mv
(7)

This is a modified Hill’s equation

• Consider small momentum offsets ∆p = p− p0 � p0

1

p0 + ∆p
=

1

p0

(
1 +

∆p

p0

)−1

≈ 1

p0
− ∆p

p2
0

(8)
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Transverse Equation of Motion - 4

• Insert equation 8 into modified Hill’s equation 7

d2x

ds2
− 1

ρ

(
1− x

ρ

)
= −eB0

p
− exg

p

d2x

ds2
− 1

ρ

(
1− x

ρ

)
= −eB0

p0
+
eB0∆p

p2
0

− exg

p0
+
exg∆p

p2
0

(9)

• Remember magnetic rigidity??, Bρ = p/e

d2x

ds2
+
x

ρ2
=

1

ρ

∆p

p0
+ kx (10)

where k = eg/p0 and the last term is the product of two
small terms (≈ 0)
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Transverse Equation of Motion - 5

• Finally a new modified Hill’s equation

d2x

ds2
+

(
1

ρ2
− k
)
x =

1

ρ

∆p

p0
(11)

• Compare to the original Hill’s equation from transverse
lectures

d2x

ds2
+

(
1

ρ2
− k
)
x = 0 (12)

• Particles with different momenta/energy have
different orbits
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Dispersion

• General solution will be of the form x(s) = xh(s) + xi(s)

• From previous lecture,
dispersion is defined as

D(s) =
xi(s)

∆p/p0
(13)

• It is just another orbit and
is subject to the focusing
properties of the lattice

• The orbit of any particle is
the sum of the well-known
xh and dispersion
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Matrix formalism

• Recall transfer matricies from transverse lectures and add
dispersion (

x
x′

)
1

=

(
C S
C ′ S′

)(
x
x′

)
0

+
∆p

p0

(
D
D′

)
(14)

where C = cos
√
|k|s, S = 1√

k
sin
√
|k|s, C ′ = dC

ds , S
′ = dS

ds

and D′(s) =
x′i(s)

∆p/p0

• One can show that

D(s) = S(s)

∫ s1

s0

1

ρ
C(s)ds− C(s)

∫ s1

s0

1

ρ
S(s)ds (15)
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Examples of Dispersion - 1

• Start with something simple, a drift!

Mdrift =

(
1 l
0 1

)
, C(s) = 1, S(s) = l (16)

• Importantly ρ =∞ so immediately Ddrift = 0

• OK, how about a pure sector dipole?

Mdipole =

(
cos l

ρ ρ sin l
ρ

−1
ρ sin l

ρ cos l
ρ

)

C(s) = cos
l

ρ
, S(s) = ρ sin

l

ρ
(17)
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Examples of Dispersion - 2

• Putting this in the equation for dispersion

Ddipole(s) = sin
l

ρ

∫ l

0
cos

s

ρ
ds− cos

l

ρ

∫ l

0
sin

s

ρ
ds

= sin
l

ρ

[
ρ sin

s

ρ

]l
0

− cos
l

ρ

[
−ρ cos

s

ρ

]l
0

= ρ sin2 l

ρ
+ ρ cos

l

ρ

(
cos

l

ρ
− 1

)
= ρ

(
1− cos

l

ρ

)
(18)

• And D′dipole(s) = sin l
ρ
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Examples of Dispersion - 3

• Assuming θ is small we can expand this

D(s)dipole = ρ

(
1− cos

l

ρ

)
≈ ρ

(
1−

[
1− 1

2

(
l

ρ

)2
])

≈ ρ

2

(
l

ρ

)2

=
ρθ2

2
(19)
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Matrix formalism continued

• Can now expand the transfer matrix to include dispersion x
x′

∆p/p


1

=

C S D
C ′ S′ D′

0 0 1

 x
x′

∆p/p


0

(20)

• Dispersion can be calculated by an
optics code for a real machine

• D(s) is created by the dipoles. . .

• . . . and focused by the quadrupoles

• Diamond DBA example ⇒
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Dispersed Beam Orbits

• These are 2D ellipses defining the beam
• The central and extreme momenta are shown (there is a

distribution in between)
• The vacuum chamber must accommodate the full spread
• With dispersion the dispersed closed orbit for a given

particle is (assuming Dy = 0)

y(s) = yβy(s), x = xβx(s) +D(s)
∆p

p
(21)
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Dispersed Beam Size

• Dispersion also contributes to the beam size

• Therefore we can measure the dispersion by measuring
beam sizes at different locations with different amounts of
dispersion and different βs
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Dispersion Suppression

• Given a periodic lattice what can we do about dispersion?
• We can’t get rid of it completely as it’s produced by the

dipoles
• Answer . . . suppress the dispersion elsewhere
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Dispersion Suppression: Easy option

• Use extra quadrupoles to match D(s) and D′(s)

• Given an optical solution in the arc, suppressing dispersion
can be achieved with 2 additional quadrupoles

• But that’s not enough! Need to match the Twiss,
optical parameters too

• An extra 4 quadrupoles are needed to match α and β
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Dispersion Suppression: Easy option

Advantages:

• Straight forward

• Works for any phase advance per cell

• Ring geometry is unchanged

• Flexible! Can match between different lattice structures

Disadvantages:

• Additional quadrupole magnets and power supplies
required

• The extra quadrupoles are, in general stronger

• The β function increases so the aperture increases
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Dispersion Suppression: Missing Bend

• Start with D = D′ = 0 and create dispersion such that the
conditions are matched in the first regular quadrupoles

• Utilise n cells without dipole magnets at the end of an
arc, followed by m arc cells

• . . . hence “missing bend” dispersion suppression

• Condition:

2m+ n

2
ΦC = (2k + 1)

π

2
(22)

where ΦC = cell phase advance,
sin mΦC

2 = 1
2 , k = 0, 2, . . . or

sin mΦC
2 = −1

2 , k = 1, 3, . . .
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Dispersion Suppression: Missing Bend

Advantages:

• No additional quadrupoles or new power supplies

• Aperture requirements are the same as those in the arc as
β is unchanged

Disadvantages:

• Only works for certain phase advances restricting optics
options in the arc

• The geometry of the ring is changed
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Dispersion Suppression: Half Bend

• How about inserting different strength dipoles? Does it
help?
• Assume you have a FODO arc cell, a lattice insertion and

then a dispersion free section without dipoles
• Condition for vanishing disperion can be calculated for n

cells with dipole strength δsup

2δsup sin2

(
nΦC

2

)
= δarc (23)

• So if we require δsup = 1
2δarc we get

sin2

(
nΦC

2

)
= 1 ⇒ sin(nΦC) = 0

⇒ nΦC = kπ, k = 1, 3, . . . (24)
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Dispersion Suppression: Half Bend

Advantages and Disadvantages are the same as for the
missing bend only there is an extra disadvantage:

A special half strength dipole is required which may add extra
cost to the design

N.B. This is not an exhaustive list of dispersion suppression techniques, just a taster!
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Chromaticity - 1

• What about off-momentum effects through quadrupoles?

• The focusing strength of a quadrupole depends on the
momentum of the particle 1/f ∝ 1/p

• Particles with ∆p > 0, ∆p < 0, ideal momentum

• Off-momentum particles oscillate around a chromatic
closed orbit NOT the design orbit
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Chromaticity - 2

• Normalised quadrupole strength k = g
p/e

• In case of a momentum spread

k =
eg

p0 + ∆p
≈ eg

p0

(
1− ∆p

p0

)
= k0 + ∆k (25)

∆k = −∆p

p0
k0 (26)

• This acts like a quadrupole error in the machine and leads
to a tune spread

∆Q =
1

4π

∫
∆k(s)β(s) ds = − 1

4π

∆p

p0

∫
k0(s)β(s) ds (27)
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Chromaticity - 3

• This spread in tune is expressed via chromaticity, Q’ or
the normalised chromaticity, ξ

Q′ =
∆Q

∆p/p0
, ξ =

∆Q/Q

∆p/p0
(28)

• Note that chromaticity is produced by the lattice itself

• It is determined by the focusing strength of all the
quadrupoles

• The “natural” chromaticity is negative and can lead to
a large tune spread and consequent instabilities

• For example, for a FODO lattice ξ ≈ −1
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Correcting Chromaticity - 1

• Want to “sort” the particles by their momentum

• Utilise dispersive trajectory! Apply magnetic field that is
zero at small amplitudes and rises quickly outward

• Use sextupoles!

Bx = g̃xy, By =
1

2
g̃(x2 − y2) (29)

• This results in a linear gradient in x,
∂Bx

∂y =
∂By

∂x = g̃x

• And a normalised quadrupole strength
ksext = g̃x

p/e = msextx = msextD∆p/p
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Correcting Chromaticity - 2

• This all results in a corrected chromaticity

Q′ = − 1

4π

∮
β(s) [k(s)−mD(s)] ds (30)

• Chromatic sextupoles: Sextupoles at nonzero dispersion
can correct natural chromaticity
• Usually 2 families, one horizontal and one vertical
• Place where βx/yD is large to minimise their strength
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Summary

• Reminder of co-ordinate system

• Transverse equation of motion: modified Hill’s equation
with momentum spread

• Dispersion revisited in matrix form

• Effect of dispersion on beam orbit and beam size

• Dispersion suppression

• Chromaticity and chromatic tune spread

• Chromatic sextupoles and chromaticity correction
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