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Problem 1. Write Hamilton’s equations for the following Hamiltonians
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Figure 1: Spherical pendulum

Problem 2. A spherical pendulum is a pendulum that is suspended from a pivot mounting, which enables
it to swing in any of an infinite number of vertical planes through the point of suspension. The kinetic (T)
and potential (V) energies in in the coordinate system shown in the figure are given by

T =
1

2
ml2

(
θ̇2 + sin2 θφ̇2

)
(1)

and
V = mgl(1 − cos θ) (2)

where l is the length of the pendulum. Write down the Lagrangian then calculate the canonical momenta
and hence write the Hamiltonian. Finally write Hamilton’s equations.

Problem 3. The Hamiltonian for a particle travelling through an ideal solenoid with constant axial field
Bz may be written

H(x, y, Px, Py; z) =
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where x, y are the tranverse coordinates and Px, Py the transverse canonical momenta. It is evident that
the Hamiltonian contains the cross term (yPx − xPy), i.e. the system is coupled. Make use of the following
generating function

F2(x, P̂x, y, P̂y, t) =
(
xP̂x + yP̂y

)
cos θ(z) +

(
xP̂y − yP̂x

)
sin θ(z)

to make a canonical transformation to new variables x̂, ŷ, P̂x, P̂y where

θ =

∫
ωLdz

is the Larmor angle and ωL = qBz

2mγ is the Larmor frequency. Show that the resulting Hamiltonian Ĥ(x̂, ŷ, P̂x, P̂y; z)
is decoupled. Note, that in this case the relation

Ĥ = H +
∂F2

∂z

is non-trivial.

Problem 4. The potential term in the Hamiltonian of a normal sextupole of normalised strength k2 and
length L is given by

H =
k2L

3!

(
x3 − 3xy2

)
(3)

where (x,y) are the transverse coordinates. Transform to action-angle coordinates (J, φ) making use of the
relation

x =
√
Jxβx cosφx

y =
√
Jyβy cosφx

where βx,y are the transverse betatron functions. Considering only the terms that involve Jx (i.e. setting
Jy = 0), identify the resonance driving terms in this case (given by the value of n in cosnφ).

Problem 5. In the Hénon map the coordinates are updated as follows(
x
p

)
= R(2πq)

(
x

p+ x2

)
(4)

where R(θ) is the rotation matrix, q is the tune and (x,p) are canonical coordinates. This map is analogous
to the case of a linear lattice with a single thin sextupole (in one transverse dimension).

Write a code (e.g. in Python) to iterate this map a few hundred times starting with a set of a few hundred
starting coordinates. Plot all the coordinates after each iteration on a single phase space figure. Produce
phase plots at tunes close to 1/5, 1/4 and 1/3.

You should observe a region of bounded motion, chaos, islands of stability, fixed points etc. The example
below was produced with q = 0.21. A set of 300 starting coordinates were distributed uniformly along the
x-axis in the range -1 to +1 and tracked for 1000 iterations (the initial p coordinate was set to zero in all
cases).
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Figure 2: Example phase space in case of Hénon map (q=0.21).
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