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Hamiltonian dynamics introduction
• In Hamiltonian mechanics, the equations of motion follow from the Hamiltonian, H, which represents the total energy of a 

conservative system (the sum of the kinetic energy T and potential energy V).
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• Phase space
• Liouville’s Theorem
• Action-angle coordinates
• Hamiltonian flow
• Canonical coordinates and transformations
• Symplecticity
• Integrability 
• Poisson Brackets
• Lie Algebra

Key concepts related to Hamiltonian dynamics

The Hamiltonian (conservative system)

Hamilton’s equations

where (q,p) are canonical coordinates.



Pendulum example
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Newtonian approach

Hamiltonian approach

Hamilton’s equations follow

Write the Hamiltonian for the system
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Historical Approach

Three approaches to Classical Mechanics

Newtonian

Lagrangian

Hamiltonian



Newtonian Mechanics

• The key function is the force F(𝑟, �̇�, 𝑡) where 𝑟 is the position, �̇� is the velocity and 𝑡	is time.

• The equation of motion, in an inertial frame, is  
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• In a non-inertial frame fictitious forces may need to be considered. In a non-Cartesian coordinate system, 
the analysis can get more complicated.

(2nd order differential equation)



Lagrangian Mechanics
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• Mechanics can be reformulated in way that avoids specifying a force directly.
• Let us define the action S.

• 𝐿(𝑞, �̇�, 𝑡) is the Lagrangian, a function of generalized coordinates, velocities and time.
• Hamilton’s principle (often misleadingly called the “principle of least action”) holds 

that the system evolves such that S is stationary,

• The equation of motion (the Euler-Lagrange equation) follows 

• In the case of a conservative force (depends on q only)

(2nd order differential equation)

• Applies in any coordinate system 
including non-inertial ones.

• Constraints can be incorporated 
naturally. 



Lagrangian example – particle on a cone
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• Consider a particle rolling due to gravity in a frictionless cone. The cone’s opening angle 
α places a constraint on the coordinates tanα = r/z. We may write the Lagrangian in 
cylindrical coordinates 

• Reduce the number of coordinates  by eliminating z via 

• The Euler-Lagrange equation for each coordinate…

…can be be solved to obtain the equations of motion 



From the Lagrangian to the Hamiltonian

• Perform a Legendre transformation to get from the L(q!, �̇�" , 𝑡) to 𝐻(𝑞" , 𝑝" ,t).
• Defining the conjugate momentum 
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• The definition of the Hamiltonian follows

Can also write

• By comparing the differential of the Hamiltonian and Lagrangian, Hamilton’s equations of motion can be found

Note – in this case we have a pair of first order differential equations for the phase space coordinates.



Summary of approaches
Newtonian Lagrangian Hamiltonian

Key functional F(r,ṙ,t) 𝐿(𝑞" , �̇�" , 𝑡) 𝐻(𝑞" , 𝑝" , 𝑡)
Equation of motion

Strengths • Can include dissipative 
forces

• Ease of incorporating 
constraints

• Flexibility of coordinate 
system

• First order differential 
equations

• Connection to powerful 
geometric theory that 
flows from the 
conservation of energy.
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Phase space (1)
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• In Hamiltonian mechanics, the canonical momenta pi are promoted to coordinates on equal footing with the generalized 
coordinates qi . 

• The coordinates (q, p) are canonical variables, and the space of canonical variables is known as phase space. 

phase spaceTime series



Phase space (2)
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• The phase space may exhibit features such as bounded/unbounded motion, regular or chaotic motion, stable and unstable 
fixed points, resonances etc. 



Liouville’s theorem
• Consider the particle distribution function, f(pi,qi;t).
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• Liouville’s theorem states that, for a system subject only to non-dissipative forces (dH/dt = 0) the phase space 
distribution function is constant along the trajectory of the motion, i.e. 

• The phase space acts like an incompressible fluid. The phase space density cannot be increased unless a non-conservative 
(dissipative) force is added (e.g. charge exchange injection). 



Symplecticity 

• A map M is used to track particles from one part of a ring to another or turn-by-turn. Quantities such as betatron tune 
and other optics parameters can be obtained from the map itself.

13

• How do we ensure the map is consistent with the Hamiltonian? Let’s write Hamilton’s equations in matrix form

• Define a vector ζ =(qi, pi) and write Hamilton’s equations in vector form

• It can be shown that the corresponding map M given by  

has the symplectic property 

(Ω is a skew-symmetric matrix)



Canonical transformations

• It often proves useful to transform from one set of phase space coordinates (q,p) to another (Q,P). The transformation 
is said to be canonical if it preserves the form of Hamilton’s equations. 

•  Consider the transformation from H(q, p, t) to K(Q, P, t). From the gauge invariance of the Lagrangian we can write
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• The function F is a generating function that can depend on various combinations of old and new phase space coordinates.
• Consider the case F = F1(q,Q,t), known as a type 1 generating function. Then by the partial derivative chain rule

(Assume the case λ=1) 

Rearranging terms

To allow separately independent 
coordinates the coefficients must be zero



Canonical transformation – generating functions 
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Action-angle coordinates (1)
• The canonical transformation to action-angle coordinates helps simplify the dynamics. Define canonical variables (θ,Ι) 

such as the Hamiltonian depends only on action, H = H(I). Then
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• Let’s apply this transformation for the case of a simple harmonic oscillator with Hamiltonian

• Try a transformation to action-angle coordinates

=>

This is independent of f(P), and has the form of the F1(q,Q,t) type of generating function 



Action-angle coordinates (2)

• The corresponding generating function is given by
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=>
• Rearrange for q

• By comparing with equation for q on previous slide, we obtain f(P) and K.

• From the equations of motion for P, Q we see action P is constant and depends on energy, while angle Q increases 
monotonically in time.



Integrability

• The Liouville-Arnold theorem states that existence of n invariants of motion is enough to fully characterize a for an n 
degree-of-freedom system. In that case a canonical transformation exists to action angle coordinates in which the 
Hamiltonian depends only on the action. 

• For an ideal linear lattice, the motion in both horizontal and vertical planes can be separately transformed into action-
angle coordinates. The motion remains bounded and regular indefinitely in this case.
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Poisson Brackets

• Introduce functions of the canonical variables u(q,p) and v(q,p). The Poisson bracket of u and v is 
defined as 
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• For the phase space coordinates we have 

• Poisson bracket is invariant under canonical transformation.  



Poisson Brackets – Hamilton’s equations

• Start with the total differential of a function u = (qi, pi, t)
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• Making use of Hamilton’s equations

• Rewriting in terms of a Poisson bracket 

• Setting u= q or u = p, and assuming no explicit time dependence, Hamilton’s equations follow



Lie operator and transformation

• The Lie operator for function f(qi, pi) is defined
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• The Lie operator f operating on the function g is equivalent to the Poisson bracket of the two functions. 

• Powers of Lie operators 

• The exponential operator is known as a Lie Transformation (allows us to build symplectic transfer maps!)



Lie operators of phase space variables
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Credit: Todd Satagota (USPAS lectures)



Symplectic map
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• Define a map M (e.g. transfer matrix) that updates the coordinates over some increment 

• The map is symplectic if 



Taylor series map
• The phase space coordinates can be expressed as a Taylor power series of the initial coordinates

24

where R, T are the 1st and 2nd order transfer map matrices, (zi,0) and (zi,1) are the phase space coordinates at the entrance 
and exit of a lattice element, respectively. In general, the map is not symplectic when truncated at some order.



Map from Lie Transformations

• Symplectic maps can be created using Lie transformations
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with M=exp(t:H:). A map to a given order in phase space coordinates can be created by composition 

The map can be truncated at order k and it remains symplectic (Dragt-Finn factorisation theorem). Make use of the 
Backer-Campbell-Hausdoff (BCH) formula



Lie Operators for a drift
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Credit: Todd Satagota (USPAS lectures)

The map for a drift is simply 

The equivalent Lie operator is 

To show this expand the transformation as follows 

Noting and the higher order terms are zero, 

Since there is no potential term,



Lie Operators for Accelerator elements
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2.4 Lie operators for other accelerator elements

The transport maps for accelerator elements can be represented as Lie transformations. For
example, consider the one-dimensional drift. We know that it’s usual map is

Mdrift =

 
1 L
0 1

!

(32)

The Lie transformation corresponding to this is exp(:�1
2Lp2 :). We can see this by writing

out a few terms:

:p2 : x = �2p (:p2 :)nx = 0 8n > 1

:p2 : p = 0 (:p2 :)np = 0 8n > 1 (33)

From this it’s apparent that exp(:�1
2Lp2 :)x = x + Lp, and exp(:�1

2Lp2 :)p = p.
We can similarly establish Lie operators for other elements, including nonlinear terms such

as thin-lens multipoles. We couldn’t do this with the simple linear matrix formalism before,
but now we can apply the full power of Lie operators and Lie algebras to concatenate these
maps, simulate accelerator maps more e�ciently, and solve nonlinear dynamics problems.
Some examples of these elements are listed here in Table 1.

Table 1: Lie Operators for Common Accelerator Elements
Element Map Lie Operator
Drift space x = x0 + Lp0 exp(:�1

2Lp2 :)
p = p0

Thin-lens quadrupole x = x0 exp(:� 1
2f

x2 :)
p = p0 � 1

f
x0

Thin-lens kick x = x0 exp(:�xn :)
p = p0 + �nxn�1

0

Thick focusing quad x = x0 cos
p

kL + p0p
k

sin
p

kL exp(:�1
2L(kx2 + p2) :)

p = �kx0 sin
p

kL + p0 cos
p

kL
Thick defocusing quad x = x0 cosh

p
kL + p0p

k
sinh

p
kL exp(:�1

2L(kx2 � p2) :)

p = �kx0 sinh
p

kL + p0 cosh
p

kL
Coordinate shift x = x0 � b exp(:ax + bp :)

p = p0 + a
Coordinate rotation x = x0 cos µ + p0 sin µ exp(:�µ

2 (x2 + p2) :)
(Phase advance µ) p = �x0 sin µ + p0 cos µ
Full-turn Hamiltonian (lots of things) exp(C :He↵ :) or

exp(:�µ

2 (�x2 + 2↵xp + �p2) :)

Note that Lie representations are really useful for generalizations to nonlinear systems, and
for power series analysis when performed by computers. However, Lie operators like those
listed in this table really aren’t useful for simple linear accelerator problems. For example,
consider the thin-lens FODO lattice: its Lie representation is given by the concatenation

exp

 

:� 1

2f
x2 :

!

exp
✓
:�1

2
Lp2 :

◆
exp

 

:
1

2f
x2 :

!

exp
✓
:�1

2
Lp2 :

◆
(34)

Note the reverse ordering; these are operators, after all! Considering that these are infinite
series before losing terms when they are applied to (x, p), expanding this is a complete
headache compared to the simple 2⇥ 2 or 4⇥ 4 matrix approach.

7

Credit: Todd Satagota (USPAS lectures)



Cheat Sheet
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• Hamiltonian formal definition, the Legendre transform
• For a conservative system H = T + V 
• Hamilton’s equations… 

• …may be expressed in terms of Poisson brackets

• The following fundamental concepts follow
• Liouville’s theorem: 
• Symplecticity
• Integrability (#invariants = # degrees of freedom)

Symplectic maps can be constructed using Lie Transformations


