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Accelerator case

Consider a circulating accelerator with particles moving around the ring at
relativistic velocities.

@ Start with the Hamiltonian for a relativistic particle in an
electromagnetic field.

Transform into convenient coordinates (Frenet-Serret).

Change the independent variable from time to coordinate s.

Convert to small dynamic variables (normalised transverse momenta
and energy deviation).

Introduce potential of each magnet element
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Hamiltonian - General electromagnetic fields

The Lagrangian in general EM fields U(x, x,t) = e(¢ — v - A) is given by

L(x,%,t) = —mc®\/1 — 2 — ed + ev - A. (1)

the conjugate momentum is

L 3
p=b_ Mg, )

o 1o P

i.e. the field contributes to the momentum.
The Hamiltonian

2
H(q,P,t) =Y Pigi— L= ——— + 6. (3)
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As before use )

me. _ 2 _ /22 1 p2
——— =7ymc® = c\/ mcc+p
V1=

H(q,P,t) = c\/mzc2 + (P — eA)? + eg. (4)

to obtain
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Frenet-Serret coordinates

For the transverse plane we can specify
motion with respect to a reference or-
bit we label ry(s). s is the arc length
along the closed orbit from some refer-
ence point.

Then the tangential unit vector

n»
N>

S(S) _ drcglﬁs) 7

The principle unit normal vector, perpendicular to the tangent vector

x(5) = () L) (6)

where p(s) defines the local radius of curvature.
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The unit binormal vector, orthogonal to the transverse plane
2(s) = x(s) x §(s). (7)

These vectors X, z, § form the orthonormal basis for the right handed
Frenet-Serret curvilinear coordinate system. In the planar case, the particle
orbits are

r(s) = rp(s) + xx(s) + zZ(s). (8)
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It can be shown Hamiltonian becomes

H(S,X7Z7 Ps; Px, Pz, t) =

(s Z AT (e — A + (e — A+ e0. (9)
(1+32)

Note: the Hamiltonian for a straight beamline is obtained in the limit
x/p — 0. The equations of motion follow

c |m2c? +

: OH . OH . OH

= X = — ZzZ =
Ops’ Ipx’ Op-
oH . oH . OH

ps:_g7 Px:—aa Pz = 82'
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Change of independent variable
We would like to change independent variable from t to s. Our new

canonical variables become
(11)

(X7pX)7 (y7py)a (_t7 H)

Our new Hamiltonian is Hy(t, x,z, —H, px, pz,S) = —ps
Then our new canonical equations in terms of s are

= Ips ,:_3p5 Z/:_aps
OH’ Opx’ ops
aps 8pS apS
r_ — [
T T T as P27 (12)
Hy = —ps =
—eA; — (1 + X> \/Clz(H — e)? — m?c? — (px — eAx)? — (p; — €A,)?
p
(13)
8/43
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Reference momentum

It makes sense to construct a Hamiltonian with reference to a reference
momentum Py. This allows simplification in the case of small momentum

spread.
We end up with

H= —€das — (1 + f) \/(E — e¢)2 - mec? - (ﬁx - eax)2 - (152 - 632)2

p P2c? Po
(14)
where
< Pi ~  Hi i
i~ pi=5, H—H=45, A =e5 1
pi — P Py 1— Po —a ePO (15)
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Change of longitudinal coordinates

Define new longitudinal coordinates with respect to the reference particle.

E 1 S
= - — —, SZCAt:__Ct ]-6
E™ Poc B Bo (16)

where g is known as the energy deviation and [y is relativistic beta.
Invoking the generating function

J

Fa(x, Px,z, Py, —t,0g,s) = xPyx + xP, + (ﬂi — ct> (% + 55) (17)
0
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The 'Accelerator Hamilton'

We find that the transverse variables are unchanged and the new
Hamiltonian H = H +5 85 can be, after some manipulation, shown to be

H = —(1+hx)\/(50+55—:)0¢c) 2 (B — ean)? — (B, — ea,)? — —

838

1)
—(1+ hx)as + B—E (18)
where h = 1 is the curvature.

The Hamiltonian for each element in an accelerator can be found by
substituting the corresponding potential a5 or ¢.
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Multipole magnets

FIG. 4. Normal and skew 2n-pole magnets in Cartesian coordinates. Each figure shows magnetic (electric) field streamlines
and poles’ shape in transverse cross section. North (positive electrostatic potential) and south (negative electrostatic potential)
poles are shown in red and blue and are given by (B,.4), = FR} respectively, where R, is the distance to the pole’s tip.

The vector potential for a straight multipole magnet with axial symmetry is

A,=0, A,=0, = _RZ(b + iap) (X —i‘nizl) (19)

nry
giving magnetic field (B =V x A)
A OA s (x +iz)"1

Bz By = ——— n .n
+i x oy R;(b + iap)

(20)
o
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Curl in curvilinear coordinates

The curl in curvilinear coordinates is

0As 1 0A;

B« = [VxAx=

B, = [VxA,=

0A;, 0A«

B, = [VxA,=22_ 9%

° [ ls Ox 0z
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Dipole magnet (n=1)

A arc length
0o T 500

WV

Starting with the following vector potential components

A =0, A =0, A= —Bo[x— 1% (24)
X — Y zZ — Y s — 0 2(1+hX)

using the curl equations one finds the field components

B.=0, B,=B;, Bs=0 (25)
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Dipole magnet: Hamiltonian

Using the vector potential for a dipole, the following Hamiltonian results

1 2 1
H = —(1+hx)y/| 5 +0e) —p2—p2—

Bo 8676
2

where the normalised dipole field strength is ky = PiOBo.
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As long as the dynamical variables are small the Hamiltonian can be
expanded to second order as

2 2 2 2
P 1% hkoX hX(SE 5E
Hy = — + == + (ko — h)x + - + 27

The following observations can be made:

@ The (kg — h)x term results in a change in py. It is zero if ko = h, i.e.
when the dipole field bends with the design curvature.

@ The %hkox2 term is the weak focusing term.

° Theh’gz’f term represents first order dispersion.

@ Note - the high order terms that are ignored when expanding the
square root are known as kinematic terms.
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Apply Hamilton's equation (assume kg = h)

dx OH
/
= — = — = Py 2
x i~ op P (28)
dp OH hoe
A - S S 29
Px ds  Ox X+ 5 (29)
In the case of g = 0, it follows x” = pl, = —hkok, the solution is that of
a harmonic oscillator
x(s) = x(0) cos( hk05> + Px(0) sin( hkos> (30)
N
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The complete solutions for the transverse coordinates (assuming ko = h):

x(s) = x(0)cosws + Px(O)SiZ]WS + 55(0)50 (1—(:0sws> (31)

w2
px(s) = —x(0)wsinws + px(0)cosws + 55(0); sinws (32)
z(s) = 2(0) + p:(0)s (33)
pz(s) = p:(0) (34)

where w = v/ hk and (x(0), px(0), z(0), p2(0)) are the initial transverse
coordinates. Note the oscillatory terms in the horizontal plane - the effect
of weak focusing.
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Dipole magnet: Transfer Matrix

It is convenient to express the map of a dipole magnet in the form of a
transfer matrix

coswL sinwl 0 0O l—c%swL
w wBo
—wsinwl coswlL 0 0 O saﬁl;uL
0 0 1 L O 0
M= 0 0 010 0 (35)
inwL 1— L L wl—sinwl
N N
0 0 0 0O 1

where L is the dipole length. This will multiply the following phase space
vector (x, px, ¥, Py, S, 9).
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Quadrupole magnet (n=2)

by (o
A,=0, A,=0, As:—2—r0(x —z) (36)
using the curl equations one finds the field components
B, = &Z, B, = EX, Bs=0 (37)
o o
leading to Hamiltonian (the normalised quadrupole gradient k; = ,g’ffo).
o ( 1 >2 11, .,
H=—— —+6 —p2—p2— =+ -k (x*—z 38
50\/50Epp37§21( ) 8
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To second order the Hamiltonian becomes

2 2 2 2
P Pz k1X klz 1 2
Hy == 4 2 — B 39
b= TS 2+2ﬂ5735 (39)

If k1 > 0 this leads to focusing in x and defocusing in z. The transfer
matrix for a "focusing” quadrupole follows

coswl an“’L 0 0 0 0
—wsinwl coswl 0 0 0 Sir[{};uL
0 0 coshwl  smbel g g
M= 0 0 wsinhwl coshwl 0 0 (40)
L
0 0 0 0 1 2
0 0 0 o 0 1

where w = v/ki.
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Symplectic integration of a Harmonic oscillator

The Hamiltonian for a harmonic oscillator in one dimension is

Hip.qi7) = 5 (5 + &) (41)

where the potential energy is U(q) = %2. The equations of motion are

q = 8_p P
. 8H_
p = _6_q__q

The exact evolution is given by
(i) =)= (o ) (59) e
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Note the symplectic condition (MQM = Q) is met

cosT  sinT 0 1 cosT —sinT \ 0 1 (43)
—sinT  cosT -1 0 sint cost /) \ -1 0
This condition must be satisfied to preserve the phase space volume under
evolution (Liouville). Next, expand the cosine and sine to first order

q(7)> (1 T)(q(0)>

= 44
( o(7) —r 1)\ p(0) (44)
The symplectic condition is not satisfied in this case and furthermore

det( L T)’—1+T2 (45)

-7 1
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The energy after one timestep

(P +a(rP) = 50+ 7)) (P4 ) (46)

N

H integrated =

The increase in energy will cause the trajectory to spiral outwards. A
symplectic integration scheme (one the preserves phase space volume) can
be created as follows

o)\ _( 1t 7 q(0)
(50 )=(% 172 ) (3o 0
Although the symplectic condition is met we find after one time step
1 T
Hintegrated = E (P2 + q2) + 5Pq (48)

2

the integrated Hamiltonian differs from the true one.
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. -
> v

q q

Since Hintegrated is conserved, the difference between it and the true
Hamiltonian Hye is constant and the trajectory is bounded. The figure on
the left shows level curves for Hye and on the right for Hiptegrated-
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Splitting the Hamiltonian (1)

In general a symplectic integrator is constructed by splitting the

Hamiltonian into terms R and K that depend on momentum and
coordinates, respectively.

2
H= % +V(x) = R(px) + K(x)
The Lie operator for R becomes

.R.X_E)iR@x_aR(‘)ix__aR
T Ox Opy Opc Ox
OROpx  OR Opx

R :ipx=— — — =
P Ox Opx  Opx Ox 0

Opx

Similarly for K

'K' _%2 %%—0
T X Op. OpeOx
0K Opx OK Opxy 0K

= — ——— — ——

Opx Ox  Ox
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Splitting the Hamiltonian(2)

It follows that the Hamiltonian K (the "kick") updates the momentum
only
efix = x
e py = px + Ox

while R (the "drift") updates the position alone
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First order integrator

To first order we can write

e—t:R(pX)—‘rK(x) — e—t:R(pX —t:K(x)

Je

This is the symplectic Euler method. Dividing the interval into steps of
length h,

oV
Pn+1 = Pn — ha_q (qn)
oT
Gn+1 = qn + ha_q (Pn+1)

Note, the standard Euler method is non-symplectic as in the lower

equation %—Z is evaluated at p,.
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Second order integrator

~ O() WOn(Xo) ow?) o ®1(X0)
@,.Xo

UpXo

Ky

Ry

Xo Xo

Figure: One step of a symplectic Euler integrator (left) and second order leapfrog
(right). [S. Baturin]

It follows from BCH formula that if we split the Hamiltonian as follows
1 1
H = ER(pX) + K(x) + §R(Px)

then to second order

o EER(PIFK()TER(p) _ o~ t1R(p) g~ t:K(x) gt:2R(pY)

This is known as the drift-kick-drift or leapfrog integrator..
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Leapfrog integration

The leapfrog (or velocity Verlet) scheme is a second order symplectic
integrator. In simplified terms (for step size h) for the kick-drift-kick form,

hoV
Pn+1/2 = Pn + Ea_q( qn)
Xpt+1 = Xp + hpn+1/27
hoVv

Pn=Poi12 F 550 (gn+1)

Xy XI .\':

: —t———t——— >
v . v v

t, t, ot L, t t
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Fourth order integrator

Ry s
K ;, /)2

Figure: One step of the fourth order Yoshida integrator. [S. Baturin]

Yoshida found that a set of integrators at order 2n can be found building
on the second order integrator Sy. This exploits the time reversal
symmetry of the system.

S4 = 52(’)’t) o Sg(lﬁ)t) o 52(’)/1') (50)

where v = 1/(2 — 21/3), k = 1/[(21/3)(2 — 21/3)].
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Linear Integrable systems

@ The ideal linear Hamiltonian

H= QxJx + QyJy (51)

has two invariants of motion, the transverse actions J, J,. This
ensures the system is integrable.

@ However, the addition of nonlinearities may compromise this
integrability and lead to a reduction in the dynamic aperture.

@ Nonlinear magnets may be added intentionally, for example sextupole
magnets to correct chromaticity, or arise from magnet imperfections
or other sources.
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A non-integrable Hamiltonian - the Henon-Heiles system

G

0. e —
W\
-1.0 -05 0.0 05 10
:

The Hénon-Heiles potential can be written

1 1
V(x,y) =5 (x* +y%) +x° - §y3 (52)
with Hamiltonian
1 1
H=§(p§+p§+x2+y2)+x2y—§y3=E (53)

The Hamiltonian is integrable only for limited number of initial conditions.
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David Kelliher (RAL)

Poincare section in the Henon-Heiles cases

for increasing values of E. The motion is
increasingly chaotic as E approaches the
escape value E = 1/6.
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linear lattice effect of single octupole

momentum
momentum

u}
)
I
il
it
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Dynamic Aperture

X
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d
4e-06 7 1|
"4 4
306 | b e
206 | ¥
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0 ’
“1e-06
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26-06 }
e k|
X
-3¢-06 . . - - - -
0008 -0.006 -0.004 -0002 0 0002 0.004 0006

@ The dynamic aperture is largest amplitude in phase space inside of
which the motion is regular and bounded in the time range of interest.

@ Outside the dynamic aperture there is chaotic motion (but there may
also be regular motion - islands of stability).
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Chaotic motion

One can test whether the motion is chaotic by calculating the rate of
divergence between two initially close points in phase space. For regular
motion the distance d between the two tracks grows linearly with the
number of turns N

d(N) < N (54)

while for chaotic motion the separation increases exponentially
d(N) o e*V (55)

where A is the Lyapunov exponent formally defined as

, .1
Al A0 59
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Nonlinear Integrable systems

W Bending magnats

N Quadrupoles

| Sextupole correctors
I RF cavity
§ Combined dipole and skew-quad correctors
— Harizontal comectors
== Vertical correclors
Harizontal kicker
== Vertical kicker
§  Electrostatic BPMs (positian, tum-by-urn)
= Sync. light manifors (position and shape)

@ It has been proposed to build an accelerator based on a nonlinear
integrable Hamiltonian.

@ As well as reducing chaos in single particle motion, the strong tune
spread in such a machine may help stem collective instabilities via
Landau damping.

@ As before, the Hamiltonian needs to possess two integrals of motion.
A solution was found by Danilov and Nagaitsev (2010).
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Start with the Hamiltonian

2 2

2 2
_Px Pz Xz
H= > + > —I—k(s)(2 + 2>+V(X,z,s) (57)

Choose s-dependence of nonlinear potential V so that the Hamiltonian is
time-independent in normlised variables (xy, pxn, Zn, Pzn)-

2 2 X2 22
Hy = PnEPan  OXWEE 4 g0y /B). 2n/B)), (1))

2 2
2 2 2 2
Pxn —; Pzn 4 XN —; ZN 4 U(XN,ZN, ,(/})

Hy is an integral of motion for any choice of V(x,z,s) so long as it scales
with 5 appropriately.
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Octupole case

If we use an octupole for the nonlinear element then the potential should
be scaled by 1/33.

4 4 3,3
V(X,Z7 5) = B(CSM)3 (Z + ZZ . 3X2y > (58)

where « sets the octupole strength. Then the normalised Hamiltonian
becomes

2 2 2, 2 4 4 3.3
Poin +Pon | XN T 2N XN | Zn 3XuYn
Hyn = X Z —_— _—— 59
p= PPy St +a<4 ¢ (59)

In this case Hp is the only integral of motion. This solution is known as
quasi-integrable.
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Special potential

A nonlinear potential that results in a second integral of motion arises
from the Bertrand-Darboux partial differential equation®.

x2(Uxx — Uzy) + (22 = x* + ®) Uy, + 32U, — 3xU, =0 (60)

The equation has general solution

U(x,z) = f(g tf;g”) (61)

where f and g are arbitrary functions of the elliptic coordinates

Vx+ e+ 22+ /(x—c)? + 22
2c
Vx+e)2+22—/(x—c)2+22
2c

§

'The coordinates are normalised but the N is omitted
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As before, the normalised Hamiltonian is one invariant

_ptpe x4z () +e(n)

H 2
2 2 £ —n? (62)
but there is now a second invariant
f 2 2
1(%, 2, s P2) = (Xpy — 2Px)? + P2 + 262 (&) +g(n)é (63)

€22
See V. Danilov and S. Nagaitsev, PRST-AB 13 084002 (2010) for details.
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IOTA

The concept is currently being investigated at the Integrable Optics Test
Accelerator (IOTA), Fermilab.
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