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Accelerator case

Consider a circulating accelerator with particles moving around the ring at
relativistic velocities.

Start with the Hamiltonian for a relativistic particle in an
electromagnetic field.

Transform into convenient coordinates (Frenet-Serret).

Change the independent variable from time to coordinate s.

Convert to small dynamic variables (normalised transverse momenta
and energy deviation).

Introduce potential of each magnet element
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Hamiltonian - General electromagnetic fields

The Lagrangian in general EM fields U(x , ẋ , t) = e(φ− v · A) is given by

L(x , ẋ , t) = −mc2
√

1− β2 − eφ+ ev · A. (1)

the conjugate momentum is

Pi =
∂L

∂ẋi
=

mẋi√
1− β2

+ eAi (2)

i.e. the field contributes to the momentum.
The Hamiltonian

H(q,P, t) =
∑

i

Pi q̇i − L =
mc2√
1− β2

+ eφ. (3)
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As before use
mc2√
1− β2

= γmc2 = c
√

m2c2 + p2

to obtain

H(q,P, t) = c
√

m2c2 + (P − eA)2 + eφ. (4)
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Frenet-Serret coordinates

ro

s x̂
ŝ

ẑ

For the transverse plane we can specify
motion with respect to a reference or-
bit we label r0(s). s is the arc length
along the closed orbit from some refer-
ence point.
Then the tangential unit vector

ŝ(s) =
dr0(s)

ds
, (5)

The principle unit normal vector, perpendicular to the tangent vector

x̂(s) = −ρ(s)
dŝ(s)

ds
(6)

where ρ(s) defines the local radius of curvature.
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The unit binormal vector, orthogonal to the transverse plane

ẑ(s) = x̂(s) × ŝ(s). (7)

These vectors x̂ , ẑ , ŝ form the orthonormal basis for the right handed
Frenet-Serret curvilinear coordinate system. In the planar case, the particle
orbits are

r(s) = r0(s) + x x̂(s) + z ẑ(s). (8)
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It can be shown Hamiltonian becomes

H(s, x , z , ps , px , pz , t) =

c

√√√√m2
oc

2 +
(ps − eAs)2
(

1 + x
ρ

)2 + (px − eAx)2 + (pz − eAz)2 + eφ, (9)

Note: the Hamiltonian for a straight beamline is obtained in the limit
x/ρ→ 0. The equations of motion follow

ṡ =
∂H

∂ps
, ẋ =

∂H

∂px
, ż =

∂H

∂pz

ṗs = −∂H
∂s

, ṗx = −∂H
∂x

, ṗz = −∂H
∂z

. (10)

David Kelliher (RAL) Hamiltonian Dynamics November 8, 2023 7 / 43



Change of independent variable
We would like to change independent variable from t to s. Our new
canonical variables become

(x , px), (y , py ), (−t,H) (11)

Our new Hamiltonian is H1(t, x , z ,−H, px , pz , s) = −ps .
Then our new canonical equations in terms of s are

t ′ =
∂ps
∂H

, x ′ = −∂ps
∂px

, z ′ = −∂ps
∂pz

H ′ = −∂ps
∂t

, p′x =
∂ps
∂s

, p′z =
∂ps
∂z

. (12)

H1 = −ps =

− eAs −
(

1 +
x

ρ

)√
1

c2
(H − eφ)2 −m2c2 − (px − eAx)2 − (pz − eAz)2

(13)
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Reference momentum

It makes sense to construct a Hamiltonian with reference to a reference
momentum P0. This allows simplification in the case of small momentum
spread.
We end up with

H̃ = −eas −
(

1 +
x

ρ

)√
(E − eφ)2

P2
0c

2
− m2c2

P0
− (p̃x − eax)2 − (p̃z − eaz)2

(14)
where

pi → p̃i =
pi
P0
, H1 → H̃ =

H1

P0
, Ai → a = e

Ai

P0
(15)
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Change of longitudinal coordinates

Define new longitudinal coordinates with respect to the reference particle.

δE =
E

P0c
− 1

β0
, S = c∆t =

s

β0
− ct (16)

where δE is known as the energy deviation and β0 is relativistic beta.
Invoking the generating function

F2(x ,Px , z ,Pz ,−t, δE , s) = xPx + xPz +

(
s

β0
− ct

)(
1

β
+ δE

)
(17)
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The ’Accelerator Hamilton’

We find that the transverse variables are unchanged and the new
Hamiltonian H = H̃ + ∂F2

∂s can be, after some manipulation, shown to be

H = −(1 + hx)

√
(

1

β0
+ δE −

eφ

P0c
)2 − (p̃x − eax)2 − (p̃z − eaz)2 − 1

β20γ
2
0

−(1 + hx)as +
δE
β0

(18)

where h = 1
ρ is the curvature.

The Hamiltonian for each element in an accelerator can be found by
substituting the corresponding potential as or φ.
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Multipole magnets

The vector potential for a straight multipole magnet with axial symmetry is

Ax = 0, Az = 0, Al = −R
∞∑

n=1

(bn + ian)
(x + iz)n

nrn−10

(19)

giving magnetic field (B = ∇× A)

Bz + iBx = −∂Al

∂x
+ i

∂Al

∂y
= R

∞∑

n=1

(bn + ian)
(x + iz)n−1

r0
(20)
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Curl in curvilinear coordinates

The curl in curvilinear coordinates is

Bx = [∇× A]x =
∂As

∂z
− 1

1 + hx

∂Az

∂s
(21)

Bz = [∇× A]z =
1

1 + hx

∂Ax

∂s
− h

1 + hx
As −

∂As

∂x
(22)

Bs = [∇× A]s =
∂Az

∂x
− ∂Ax

∂z
(23)
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Dipole magnet (n=1)

Starting with the following vector potential components

Ax = 0, Az = 0, As = −B0

(
x − hx2

2(1 + hx)

)
(24)

using the curl equations one finds the field components

Bx = 0, Bz = B0, Bs = 0 (25)
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Dipole magnet: Hamiltonian

Using the vector potential for a dipole, the following Hamiltonian results

H = −(1 + hx)

√(
1

β0
+ δE

)2

− p̃2x − p̃2z −
1

β20γ
2
0

+ (1 + hx) k0

(
x − hx2

2(1 + hx)

)
+
δE
β0

(26)

where the normalised dipole field strength is k0 = e
P0
B0.
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As long as the dynamical variables are small the Hamiltonian can be
expanded to second order as

H2 =
p2x
2

+
p2z
2

+ (k0 − h)x +
hk0x

2

2
− hxδE

β0
+

δ2E
2β20γ

2
0

(27)

The following observations can be made:

The (k0 − h)x term results in a change in px . It is zero if k0 = h, i.e.
when the dipole field bends with the design curvature.

The 1
2hk0x

2 term is the weak focusing term.

ThehxδE
β0

term represents first order dispersion.

Note - the high order terms that are ignored when expanding the
square root are known as kinematic terms.
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Apply Hamilton’s equation (assume k0 = h)

x ′ =
dx

ds
=
∂H

∂px
= px (28)

p′x =
dpx
ds

= −∂H
∂x

= −hk0x +
hδE
β0

(29)

In the case of δE = 0, it follows x ′′ = p′x = −hk0k, the solution is that of
a harmonic oscillator

x(s) = x(0) cos
(√

hk0s
)

+
px(0)√
hk0

sin
(√

hk0s
)

(30)
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The complete solutions for the transverse coordinates (assuming k0 = h):

x(s) = x(0)cosωs + px(0)
sinωs

ω
+ δE (0)

h

β0

(
1− cosωs

ω2

)
(31)

px(s) = −x(0)ωsinωs + px(0)cosωs + δE (0)
h

β0

sinωs

ω
(32)

z(s) = z(0) + pz(0)s (33)

pz(s) = pz(0) (34)

where ω =
√
hk and (x(0), px(0), z(0), pz(0)) are the initial transverse

coordinates. Note the oscillatory terms in the horizontal plane - the effect
of weak focusing.
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Dipole magnet: Transfer Matrix

It is convenient to express the map of a dipole magnet in the form of a
transfer matrix

M =




cosωL sinωL
ω 0 0 0 1−cosωL

ωβ0

−ωsinωL cosωL 0 0 0 sinωL
β0

0 0 1 L 0 0
0 0 0 1 0 0

− sinωL
β0

−1−cosωL
ωβ0

0 0 1 L
β2
0γ

2
0
− ωL−sinωL

ωβ2
0

0 0 0 0 0 1




(35)

where L is the dipole length. This will multiply the following phase space
vector (x , px , y , py ,S , δ).
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Quadrupole magnet (n=2)

Starting with the following vector potential components

Ax = 0, Az = 0, As = − b2
2r0

(
x2 − z2

)
(36)

using the curl equations one finds the field components

Bx =
b2
r0
z , Bz =

b2
r0
x , Bs = 0 (37)

leading to Hamiltonian (the normalised quadrupole gradient k1 = qb2
P0r0

).

H =
δE
β0
−
√(

1

β0
+ δE

)2

− p2x − p2z −
1

β20γ
2
0

+
1

2
k1
(
x2 − z2

)
(38)
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To second order the Hamiltonian becomes

H2 =
p2x
2

+
p2z
2

+
k1x

2

2
− k1z

2

2
+

1

2β20γ
2
0

δ2E (39)

If k1 > 0 this leads to focusing in x and defocusing in z. The transfer
matrix for a ”focusing” quadrupole follows

M =




cosωL sinωL
ω 0 0 0 0

−ω sinωL cosωL 0 0 0 sinωL
β0

0 0 coshωL sinhωL
ω 0 0

0 0 ω sinhωL coshωL 0 0

0 0 0 0 1 L
β2
0γ

2
0

0 0 0 0 0 1




(40)

where ω =
√
k1.
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Symplectic integration of a Harmonic oscillator

The Hamiltonian for a harmonic oscillator in one dimension is

H(p, q; τ) =
1

2

(
p2 + q2

)
(41)

where the potential energy is U(q) = q2

2 . The equations of motion are

q̇ =
∂H

∂p
= p

ṗ = −∂H
∂q

= −q

The exact evolution is given by

(
q(τ)
p(τ)

)
= M

(
q(0)
p(0)

)
=

(
cosτ sinτ
−sinτ cosτ

)(
q(0)
p(0)

)
(42)
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Note the symplectic condition (MΩM = Ω) is met

(
cosτ sinτ
−sinτ cosτ

)(
0 1
−1 0

)(
cosτ −sinτ
sinτ cosτ

)
=

(
0 1
−1 0

)
(43)

This condition must be satisfied to preserve the phase space volume under
evolution (Liouville). Next, expand the cosine and sine to first order

(
q(τ)
p(τ)

)
=

(
1 τ
−τ 1

)(
q(0)
p(0)

)
(44)

The symplectic condition is not satisfied in this case and furthermore

∣∣∣∣det
(

1 τ
−τ 1

)∣∣∣∣ = 1 + τ2 (45)
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The energy after one timestep

Hintegrated =
1

2

(
p(τ)2 + q(τ)2

)
=

1

2
(1 + τ2)

(
p2 + q2

)
(46)

The increase in energy will cause the trajectory to spiral outwards. A
symplectic integration scheme (one the preserves phase space volume) can
be created as follows

(
q(τ)
p(τ)

)
=

(
1 τ
−τ 1− τ2

)(
q(0)
p(0)

)
(47)

Although the symplectic condition is met we find after one time step

Hintegrated =
1

2

(
p2 + q2

)
+
τ

2
pq (48)

the integrated Hamiltonian differs from the true one.
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Since Hintegrated is conserved, the difference between it and the true
Hamiltonian Htrue is constant and the trajectory is bounded. The figure on
the left shows level curves for Htrue and on the right for Hintegrated .
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Splitting the Hamiltonian (1)
In general a symplectic integrator is constructed by splitting the
Hamiltonian into terms R and K that depend on momentum and
coordinates, respectively.

H =
p2x
2

+ V (x) = R(px) + K (x) (49)

The Lie operator for R becomes

: R : x =
∂R

∂x

∂x

∂px
− ∂R

∂px

∂x

∂x
= − ∂R

∂px

: R : px =
∂R

∂x

∂px
∂px
− ∂R

∂px

∂px
∂x

= 0

Similarly for K

: K : x =
∂K

∂x

∂x

∂px
− ∂K

∂px

∂x

∂x
= 0

: K : px =
∂K

∂x

∂px
∂px
− ∂K

∂px

∂px
∂x

=
∂K

∂x
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Splitting the Hamiltonian(2)

It follows that the Hamiltonian K (the ”kick”) updates the momentum
only

e :K :x = x

e :K :px = px +
∂K

∂x

while R (the ”drift”) updates the position alone

e :R:x = x − ∂R

∂px

e :R:px = px
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First order integrator

To first order we can write

e−t:R(px )+K(x) = e−t:R(px )e−t:K(x)

This is the symplectic Euler method. Dividing the interval into steps of
length h,

pn+1 = pn − h
∂V

∂q
(qn)

qn+1 = qn + h
∂T

∂q
(pn+1)

Note, the standard Euler method is non-symplectic as in the lower
equation ∂T

∂q is evaluated at pn.

David Kelliher (RAL) Hamiltonian Dynamics November 8, 2023 28 / 43



Second order integrator 3

We split the Hamiltonian into a part that corresponds
to linear motion

H1 =

nX

i=1

q2
i + p2

i

2
(12)

and a part

H2 = V (q1, q2, ..., qn) (13)

that combines all nonlinearities. According to Hamilto-
nian equations, the vector field (or simply the force) that
corresponds to the Hamiltonian H1 is

f1(q1, p1, q2, p2, ..., qn, pn) =

[p1,�q1, p2,�q2, ..., pn,�qn]T. (14)

This leads to a system of n independent pairs of equations

q̇i

ṗi

�
=


0 1
�1 0

� 
qi

pi

�
, i 2 Z(1, n). (15)

The flow of this system is an n block-diagonal matrix R 

of rotations with one block given as

R
(i)
 =


cos( ) sin( )
� sin( ) cos( )

�
. (16)

Solutions are independent pairs of [qi, pi]
T that are given

in terms of the flow as

qi

pi

�
= R

(i)
 


q0
i

p0
i

�
. (17)

Here [q0
1 , p0

1, q
0
2 , p0

2, ..., q
0
n, p0

n]T is a vector of initial condi-
tions.

The vector field that corresponds to the Hamiltonian
H2 is given by

f2(q1, p1, q2, p2, ..., qn, pn) =

[0,�@q1V, 0,�@q2V, ..., 0,�@qnV ]
T

. (18)

Here @qi
stands for the partial derivative by qi. The corre-

sponding system of di↵erential equations again could be
written as n pairs of [qi, pi], however, they are no longer
completely independent.


q̇i

ṗi

�
=


0

�@qi
V (q1, q2, ..., qn)

�
, i 2 Z(1, n). (19)

As far as the vector field keep qi unchanged and only
modifies pi, the flow of the system above is defined as

K X0 = [q0
1 , p0

1 �  @q1
V, ... , q0

n, p0
n �  @qn

V ]T, (20)

with each partial derivative taken at the initial point
(q0

1 , q0
2 , ...q0

n).
Now if we consider a time mesh, t = mh m 2 N, with

a step h, then the one step integrator  h of the Hamil-
tonian H will have the from

 h = Kh � Rh. (21)

Figure 1. Schematic diagrams: one step of the symplectic
Euler method  h (left) and one step of the second order Ruth
method �h (right). Grey line indicates exact flow �t.

This is a well known symplectic Euler method (Fig.1
left diagram). Next we consider a composition Rh/2 �
Kh � Rh/2. Keeping in mind that the exponent of the
Lie operator is simply the flow: exp (�h:H1:) ⌘ Rh,
exp (�h:H2:) ⌘ Kh and using the BCH formula, we note
that [16]

Rh/2 � Kh � Rh/2 =

exp

✓
�h

2
:H1:

◆
� exp (�h:H2:) � exp

✓
�h

2
:H1:

◆
= (22)

= exp
�
�h:H1 + H2: + O(h3)

�
.

Due to the symmetry of the composition terms of the

order O(h2) cancel out h2:{H1,H2}:
4 + h2:{H2,H1}:

4 = 0.
From the calculations above it is apparent that the

integrator

�h = Rh/2 � Kh � Rh/2 (23)

preserves the Hamiltonian H up to the order O(h2) and
thus has higher accuracy than the simple Euler method.
The integrator Eq.(23) is known [16] as Strang [21] split-
ting or Marchuk splitting [22] as well as the second order
integrator introduced by Ruth [23] (Fig.1 right diagram).

Having an integrator � of given order p, it is often use-
ful to build an integrator of higher order by composing �
with itself. The following theorem gives a general method
of building such a composition [16]

Theorem 1 Let �h be a one step integrator of the order
p. If �1 + ... + �s = 1 and �p+1

1 + ... + �p+1
s = 0 then

the composition

��sh � ... � ��1h

is an integrator of order at least p + 1.

An important consequence of the above theorem for s =
3, ��3h � ��2h � ��1h, is the three step Yoshida integrator
[24–26] with corresponding gammas given by

�1 = �3 =
1

2 � 21/(p+1)
, �2 = � 21/(p+1)

2 � 21/(p+1)
. (24)

Figure: One step of a symplectic Euler integrator (left) and second order leapfrog
(right). [S. Baturin]

It follows from BCH formula that if we split the Hamiltonian as follows

H =
1

2
R(px) + K (x) +

1

2
R(px)

then to second order

e−t:
1
2
R(px )+K(x)+ 1

2
R(px ) = e−t:

1
2
R(px )e−t:K(x)et:

1
2
R(px )

This is known as the drift-kick-drift or leapfrog integrator..
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Leapfrog integration
The leapfrog (or velocity Verlet) scheme is a second order symplectic
integrator. In simplified terms (for step size h) for the kick-drift-kick form,

pn+1/2 = pn +
h

2

∂V

∂q
(qn)

xn+1 = xn + hpn+1/2,

pn = pn+1/2 +
h

2

∂V

∂q
(qn+1)
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Fourth order integrator 4

By composing the integrator (23) (p = 2) we arrive at
the integrator of order 4 in the form

�Y
h = ��3h � ��2h � ��1h, (25)

�1 = �3 =
1

2 � 21/3
, �2 = � 21/3

2 � 21/3
.

By straightforward implementation of the BCH formula
one can check that the integrator above preserves the
Hamiltonian H = H1 + H2 up to terms of order O(h4).
To avoid negative time steps we use the identity R2⇡ = I
and write the integrator (25) in the final form as

�Y
h =R�1h/2 � K�1h � R2⇡�1h/2

�K�2h � R2⇡�1h/2 � K�1h � R�1h/2,

�1 =
1

2 � 21/3
, 1 =

21/3 � 1

2 � 21/3
, 2 =

21/3

2 � 21/3
. (26)

We reiterate one distinctive di↵erence between the com-
monly used splitting of the Hamiltonian for numerical
integration and the one we used above. Commonly, the
Hamiltonian is split into a part that purely depends on
momentum and a part that is purely dependent on the
spatial coordinates. This results in a well known inte-
gration method that is sometimes referred as the “drift-
kick” method in the most simple Euler implementation.
In our case, we separated the Hamiltonian into H1 - cor-
responding to linear motion and H2 - corresponding to
a purely nonlinear “kick” (the same way as in Ref.[27]).
This splitting allows us to establish a direct connection
between the integrator of the Hamiltonian in the normal-
ized coordinates and a transformation that corresponds
to a set of optical elements.

C. Splitting of the nonlinear potential

We consider a nonlinear potential V given by Eq.(11)
and recall that it is essentially a sum of several poten-

tials V =
lP

j=3

ajPj . Each one corresponds to a a specific

order of the nonlinearity. As illustrated on Fig.2 we may
rewrite the Euler method (21) in the form

 h = K
(l)
h � Rh/(l�2) � ... � K

(3)
h � Rh/(l�2). (27)

Here K
(j)
h is a flow that corresponds to the potential ajPi.

Using the BCH formula one can ensure that this integra-
tor indeed is of the order O(h) (preserves Hamiltonian

H1 +
lP

j=3

ajPj up to the order O(h)).

With a slight modification of the theorem 1 one my
show that the method

�h =  ⇤
h/2 � h/2 (28)

with  ⇤
h = Rh/(l�2) � K

(3)
h � ... � Rh/(l�2) � K

(l)
h (adjoint

method) is a method of the order 2 and thus preserves

Figure 2. Schematic diagrams of the one step of symplectic
Euler method  h (left) and second order Ruth method �h

(right) for the case of l = 4 - nonlinear potential is split in to

two parts (corresponding flows are K(3) and K(4)).

Hamiltonian H1 +
lP

j=3

ajPj up to the order O(h2) (see

Ref.[16]). Further utilization of the method (28) by sub-
stituting it into the formula (26) will result in increasing
the order to the fourth order.

Such splitting is useful for combining di↵erent types of
nonlinear lenses in the same lattice.

D. Connection to a real optical lattice

We assume that the longitudinal and transverse mo-
tion are decoupled. Thus we consider a four dimensional
phase space. We assume as well that there is no coupling
in a linear lattice (transfer matrix has a block diagonal
form).

To establish a connection between integrators in nor-
malized coordinates {q1, p1, q2, p2} and a real optical lat-
tice, we recall that propagation of the particle from po-
sition s0 to position s1 through a linear optical channel
could be described using a block diagonal transfer matrix
[28] with the block of the type

Mx,y(s1|s0) =

Bx,y(s1)


cos( x,y) sin( x,y)
� sin( x,y) cos( x,y)

�
B�1

x,y(s0). (29)

Here, the lower index denotes coordinate pair (either

{x, Px} or {y, Py});  x,y =
s1R
s0

ds
�x,y(s) is the phase advance

between position s0 and s1; Bx,y(s) is the corresponding
block of the betatron amplitude matrix and B�1

x,y(s) its
inverse given by [28]

Bx,y(s) =

"p
�x,y(s) 0

� ↵x,y(s)p
�x,y(s)

1p
�x,y(s)

#
,

B�1
x,y(s) =

2
4

1p
�x,y(s)

0

↵x,y(s)p
�x,y(s)

p
�x,y(s)

3
5 . (30)

Here �x,y(s), and ↵x,y(s) = �1/2�0
x,y(s) are the Twiss

parameters of the linear lattice.

Figure: One step of the fourth order Yoshida integrator. [S. Baturin]

Yoshida found that a set of integrators at order 2n can be found building
on the second order integrator S2. This exploits the time reversal
symmetry of the system.

S4 = S2(γt) ◦ S2(κt) ◦ S2(γt) (50)

where γ = 1/(2− 21/3), κ = 1/[(21/3)(2− 21/3)].
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Linear Integrable systems

The ideal linear Hamiltonian

H = QxJx + QyJy (51)

has two invariants of motion, the transverse actions Jx , Jy . This
ensures the system is integrable.

However, the addition of nonlinearities may compromise this
integrability and lead to a reduction in the dynamic aperture.

Nonlinear magnets may be added intentionally, for example sextupole
magnets to correct chromaticity, or arise from magnet imperfections
or other sources.
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A non-integrable Hamiltonian - the Henon-Heiles system

The Hénon-Heiles potential can be written

V (x , y) =
1

2

(
x2 + y2

)
+ x2y − 1

3
y3 (52)

with Hamiltonian

H =
1

2

(
p2x + p2y + x2 + y2

)
+ x2y − 1

3
y3 = E (53)

The Hamiltonian is integrable only for limited number of initial conditions.
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Poincare section in the Henon-Heiles cases
for increasing values of E. The motion is
increasingly chaotic as E approaches the
escape value E = 1/6.
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Dynamic Aperture

The dynamic aperture is largest amplitude in phase space inside of
which the motion is regular and bounded in the time range of interest.

Outside the dynamic aperture there is chaotic motion (but there may
also be regular motion - islands of stability).
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Chaotic motion

One can test whether the motion is chaotic by calculating the rate of
divergence between two initially close points in phase space. For regular
motion the distance d between the two tracks grows linearly with the
number of turns N

d(N) ∝ N (54)

while for chaotic motion the separation increases exponentially

d(N) ∝ eλN (55)

where λ is the Lyapunov exponent formally defined as

λ = lim
N→∞

lim
d(0)→0

1

N
d(N)d(0) (56)
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Nonlinear Integrable systems

It has been proposed to build an accelerator based on a nonlinear
integrable Hamiltonian.

As well as reducing chaos in single particle motion, the strong tune
spread in such a machine may help stem collective instabilities via
Landau damping.

As before, the Hamiltonian needs to possess two integrals of motion.
A solution was found by Danilov and Nagaitsev (2010).
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Start with the Hamiltonian

H =
p2x
2

+
p2z
2

+ k(s)

(
x2

2
+

z2

2

)
+ V (x , z , s) (57)

Choose s-dependence of nonlinear potential V so that the Hamiltonian is
time-independent in normlised variables (xN , pxN , zN , pzN).

HN =
p2xN + p2zN

2
+

x2N + z2N
2

+ β(ψ)V (xN
√
β(ψ), zN

√
β(ψ)), s(ψ))

=
p2xN + p2zN

2
+

x2N + z2N
2

+ U(xN , zN , ψ)

HN is an integral of motion for any choice of V(x,z,s) so long as it scales
with β appropriately.
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Octupole case

If we use an octupole for the nonlinear element then the potential should
be scaled by 1/β3.

V (x , z , s) =
α

β(s)3

(
x4

4
+

z4

4
− 3x3y3

2

)
(58)

where α sets the octupole strength. Then the normalised Hamiltonian
becomes

HN =
p2xN + p2zN

2
+

x2N + z2N
2

+ α

(
x4N
4

+
z4N
4
− 3x3Ny

3
N

2

)
(59)

In this case HN is the only integral of motion. This solution is known as
quasi-integrable.
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Special potential

A nonlinear potential that results in a second integral of motion arises
from the Bertrand-Darboux partial differential equation1.

xz(Uxx − Uzz) + (z2 − x2 + c2)Uxz + 3zUx − 3xUz = 0 (60)

The equation has general solution

U(x , z) =
f (ξ) + g(η)

ξ2 − η2 (61)

where f and g are arbitrary functions of the elliptic coordinates

ξ =

√
(x + c)2 + z2 +

√
(x − c)2 + z2

2c

η =

√
(x + c)2 + z2 −

√
(x − c)2 + z2

2c

1The coordinates are normalised but the N is omitted
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As before, the normalised Hamiltonian is one invariant

H =
p2x + p2z

2
+

x2 + z2

2
+

f (ξ) + g(η)

ξ2 − η2 (62)

but there is now a second invariant

I (x , z , px , pz) = (xpz − zpx)2 + c2p2x + 2c2
f (ξ)η2 + g(η)ξ2

ξ2 − η2 (63)

See V. Danilov and S. Nagaitsev, PRST-AB 13 084002 (2010) for details.
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IOTA

The concept is currently being investigated at the Integrable Optics Test
Accelerator (IOTA), Fermilab.
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