# Updates HOM power studies

F. Batsch, I. Karpov, H. Damerau, A. Grudiev ...

7<sup>th</sup> Meeting of Task 6.1 MuCol Design Study 11/9/2023







- K. Bane formulism not really valid with the bunch length of  $\sigma_z = 5 13$  mm for simulations with intensity effects
- Instead, use resonator model instead and calculate the induced voltage for each mode:



|   | mode          | f /GHz | $k^{(0)}/$         | $G_1 \ / \Omega$ | $(R/Q)^{(0)}$ / | $Q_0/Q_{0FM}$ | φ /°  |
|---|---------------|--------|--------------------|------------------|-----------------|---------------|-------|
|   |               |        | V/(pC)             |                  | Ω               |               |       |
|   | Band 1        |        |                    |                  |                 |               |       |
|   | MM- 1         | 1.2756 | $0.848 \ 10^{-06}$ | 252.7            | 0.0002          | 1.027         | 20.0  |
|   | MM- 2         | 1.2776 | $0.239  10^{-06}$  | 252.9            | 0.0001          | 1.025         | 39.9  |
|   | MM- 3         | 1.2807 | $0.523  10^{-05}$  | 253.2            | 0.0013          | 1.021         | 59.9  |
|   | MM- 4         | 1.2845 | $0.187 \ 10^{-05}$ | 253.5            | 0.0005          | 1.017         | 79.8  |
|   | MM- 5         | 1.2885 | $0.217 \ 10^{-05}$ | 253.9            | 0.0005          | 1.012         | 99.8  |
|   | MM- 6         | 1.2924 | $0.776  10^{-05}$  | 254.2            | 0.0019          | 1.007         | 119.7 |
|   | MM- 7         | 1.2955 | $0.138 \ 10^{-03}$ | 254.5            | 0.0339          | 1.003         | 139.6 |
|   | MM- 8         | 1.2976 | $0.662  10^{-04}$  | 254.7            | 0.0163          | 1.001         | 159.2 |
|   | MM- 9         | 1.2983 | 2.08               | 254.8            | 511.0652        | 1.000         | 176.1 |
|   | Band 2        |        |                    |                  |                 |               |       |
|   | MM-10         | 2.3800 | $0.746 \ 10^{-05}$ | 370.6            | 0.0010          | 0.433         | 159.9 |
|   | MM-11         | 2.3856 | $0.147 \ 10^{-03}$ | 370.7            | 0.0196          | 0.431         | 139.9 |
|   | MM-12         | 2.3943 | $0.248 \ 10^{-03}$ | 370.9            | 0.0329          | 0.428         | 119.9 |
|   | MM-13         | 2.4055 | $0.414 \ 10^{-03}$ | 371.2            | 0.0547          | 0.424         | 100.1 |
|   | MM-14         | 2.4181 | $0.376  10^{-02}$  | 371.3            | 0.4943          | 0.420         | 80.6  |
|   | MM-15         | 2.4308 | $0.573  10^{-04}$  | 371.2            | 0.0075          | 0.416         | 61.4  |
|   | MM-16         | 2.4419 | 0.08               | 370.6            | 10.2352         | 0.411         | 43.0  |
|   | MM-17         | 2.4499 | 0.60               | 369.0            | 77.6533         | 0.407         | 25.9  |
|   | MM-18         | 2.4539 | 0.57               | 365.9            | 73.8717         | 0.402         | 11.5  |
| - | - The - The - |        | /                  |                  | 1               |               |       |

Extensive list of many HOMs in <u>R. Wanzenberg's note</u>, 180 pages!







Multi-turn wakefields calculated not for all buckets, but only those of interest:



- Multi-turn wakefields implemented in BlonD: Calculates induced voltage of that turn plus the multi-turn fields of the previous turn
- Initial bench mark tests promising, final bench marking with old code on cluster in progress





## Summary (3)

Multi-turn wakefields calculated for different Q<sub>L</sub> as test:



## Summary (3)

Multi-turn wakefields calculated for different Q<sub>L</sub> as test:







Induced voltages per turn:



Induced voltage per cavity, turn 2, section 0  $\frac{1e6}{2}$ 



#### Induced voltage per cavity, turn 1, section 0



Induced voltage per cavity, turn 3, section 0





#### **Summary summary**

- Implementation of multi-turn effects and counter-rotating bunches foreseen though resonator models per mode
- Multi-turn wakefields implemented, but not 100% benchmarked
- Effect of those scale with Q<sub>L</sub>
- More voltage, ca. 1.4 times more, has to be supplied to compensate the beam loading

 $\rightarrow$  Part of my HB2023 contribution "Intensity effects in a Chain of Muon RCS"









