

Detector Simulation in SWIFT-HEP

Ben Morgan

WARWICK THE UNIVERSITY OF WARWICK

Detector Simulation R&D @ November 2023

- AdePT Project (CERN-SFT)
 - <u>https://github.com/apt-sim</u>
- Celeritas Project (ECP: ORNL, FNAL, Argonne, LBL)
 - <u>https://github.com/celeritas-project</u>
- Vecgeom/ORANGE Surface Based Geometry (CERN, Celeritas/ORNL)
 - <u>https://gitlab.cern.ch/VecGeom/VecGeom</u> (See <u>surface_model</u> branch)
 - <u>https://github.com/celeritas-project/celeritas/tree/develop/src/orange</u>
 - ExaTEPP grant from UKRI ExCALIBUR enabling contribution here
- Short overview of status today follow links to recent presentations at <u>Geant4 Collaboration Workshop</u> (<u>1</u>, <u>2</u>) for in depth details

Reminder on Objectives of AdePT and Celeritas

- Understand usability of GPUs for general particle transport simulation
 - Prototype e+/e-/γ EM shower simulation on GPU, evolve to realistic use-cases
 - Focus on **EM physics** given computational cost in HEP workflows
- Implement GPU-targeted components for physics, geometry, field, with data models and workflow
 - Integrate components in a hybrid CPU-GPU Geant4 workflow ("Fast Sim" approach)
 - Offload tracks to GPU/CPU when preconditions like particle type or geometric region met
 - Most realistic short-term objective to allow testing/use in existing experiment code
- Ensure correctness and reproducibility
 - Validate GPU-only, CPU+GPU off/onload against pure CPU Geant4
- Understand bottlenecks and blockers limiting performance
 - Feasibility and future effort required for efficient simulation workflows on GPU
- Celeritas also have a longer term objective to include full hadronic, optical photon physics
 - See Seth's talk

Track-parallel Stepping Workflow on GPUs

extend_from_primaries while Tracks are alive do		Copy primaries to device, create track initializers
	initialize_tracks	Create new tracks in empty slots
- [pre_step	Sample mean free path, calculate step limits
	along_step	Propagation, slowing down
	boundary	Cross a geometry boundary
	discrete_select	Discrete model selection
	launch_models	Launch interaction kernels for applicable models
	extend_from_secondaries	Create track initializers from secondaries
end while		

- CPU: parallel Events, sequential Tracks
- CPU+GPU: parallel Events, parallel Tracks
 - Action based control flow
 - *Kernels determine next* **Action**, or perform an **Interaction**
 - Example from Celeritas, AdePT's is similar though with larger, per-particle, kernels

Implementing Geant4 CPU+GPU hybrid applications

- AdePT and Celeritas only target e-/e+/g physics at present, so cannot be used standalone for simulating a full EM+hadronic experiment
- Instead, use them as a "service" to offload tracks to the GPU according to preconditions such as particle type, or geometric region.
 - Basically the same as "Fast Simulation" methods
- Use Geant4 Fast Simulation or other hooks allowing Track modification, but all have same challenges:
 - Minimizing number/size of on/offload actions
 - Allow user-defined actions on GPU, such as scoring/hits
 - Synchronization between CPU/GPU (event boundaries)
 - Handing back particles (e.g. exiting particles, hadrons from photonuclear processes) from GPU to CPU

Physics Validation

- <u>G4HepEM</u> in AdePT, CPU/GPU implementation of Geant4 models/data in Celeritas.
- Excellent agreement with Geant4, but studies ongoing across problem space

6 Credits: Jonas Hahnfeld (CERN), Seth Johnson (ORNL), Amanda Lund (Argonne)

Some Benchmarking Results: AdePT w/CMS2018

- Speedup of the ECAL simulation and overall event speedup (10GeV e-)
 - AdePT does not affect the rest of the simulation, 1:1 ratio in the time spent outside ECAL
- Vary number of Geant4 worker threads
 - Decreasing AdePT speedup as the GPU becomes more saturated

Speedup of the ECAL simulation and overall per-event speedup

Some Benchmarking Results: Celeritas w/CMS Run3

- Initial performance comparison in standalone Geant4+Celeritas application
 - CMS GDML geometry/SDs
- 8CPU+1GPU standalone simulation with 14TeV tt 17-87% faster
 - Theoretical maximum speedup (all e⁻/e⁺/g tracks take zero time) in full CMSSW ~230%

Hardware: Intel Xeon Gold 6152 CPU 22c 2.10GHz + NVIDIA Tesla V100 SXM2 Geometry: CMS detector (Run 3 configuration) Input: 8 tī events @ 14 TeV from LHC pp collision

Surface-based Geometry: VecGeom, ORANGE

- Current CSG model of VecGeom known bottleneck for GPU kernels in AdePT and Celeritas
 - Divergence from different algorithmic complexity in different solids, etc
- Effort to develop and use surface- based geometry models, navigation
 - Reduce divergence from smaller number of surfaces, simpler algorithms
 - VecGeom: bounded surfaces (explore potential for work reduction in LHC-complexity geometries by reducing checks on "virtual" crossings)
 - **ORANGE**: unbounded surfaces (approach from nuclear engineering codes for reactor geometries)
- Defer to the following presentations at the Geant4 Collaboration meeting for details of developments and results:
 - Surface-based GPU model in VecGeom, Andrei Gheata et al
 - ORANGE surface geometry progress, Seth Johnson et al

Integration/Testing in Experiments: ATLAS

- TileCal test beam standalone Geant4 application as testbed
 - Code: <u>https://github.com/lopezzot/ATLTileCalTB</u> (see <u>presentation</u>)
- **AdePT**: Initial integration by Davide:
 - See <u>https://indico.cern.ch/event/1215829/contributions/5306569/</u>
- **Celeritas**: integration both standalone and as FullSimLight plugin
 - Ongoing work to integrate AdePT as FullSimLight plugin, using new functionality to score on host side to allow direct comparison with pure Geant4 and Celeritas integration
- New EMEC geometry compatible with VecGeom on GPU now available
 - Second stage testbed in FullSimLight, allowing full ATLAS geometry to be tested before bigger integration into Athena
- Topics being worked on in coordination with ATLAS Full Simulation WG.

Integration/Testing in Experiments: CMS

- AdePT: G4HepEM on CPU integrated as optional physics list, permitting direct comparison against AdePT physics
 - Validation and additional options in progress, discussions on scoring requirements for HGCal
- **Celeritas**: integration in CMSSW working with:
 - Complete offload of EM particles to GPU
 - *R-Z field map preprocessed*
 - Reconstruction of tracks hitting SDs on host side for scoring
- Work and validation ongoing together with CMS Simulation, some caveats
 - No support for MC truth
 - Celeritas reproduces "standard" Geant4 models/data, but CMSSW has many fine-grained tunes to physics/tracking compared to this

Integration/Testing in Experiments: LHCb

- AdePT: Combine standalone application example with Gauss-on-Gaussino machinery
 - Fill AdePT pipeline with particles entering LHCb Calo region
 - Generate Gauss hits from AdePT (to give equivalence with plain Geant4)
 - Working with Juan Bernardo Benavides (LHCb Doctoral Student)
- Celeritas: Request to the UK community for help/time or contacts within LHCb to try out integration!

Geant4 Review of GPU R&D Projects

- With a huge amount of progress by both projects, and growing test program with experiments, it was felt a good opportunity for a technical review with a broader panel of Geant4/Simulation experts
 - @CERN December 13-14th
 - Forum for presentation of status and results, discussion of technical topics between projects and experts
- Another key item will be finding common code/patterns between Celeritas/AdePT with the aim of converging towards a single project
 - Meetings and hackathons planned during review week on specific areas such as physics, workflows, and geometry
 - Initial discussions/ideas already in progress through monthly stand ups and other channels

Summary

- AdePT and Celeritas continuing to demonstrate feasibility of detector simulation on GPU
 - Near full EM physics validated
 - Working with ATLAS, CMS, LHCb(*) on integration, benchmarking, and scoring in their frameworks.
 - (*) Any UK interest in testing Celeritas in LHCb?
- GPU friendly geometry modeling/navigation using surface models is an **ongoing task that will be key for performance**
- Technical review in December, together with meetings/hackathons to discuss convergence towards a single project

