SWIFT
HEP

SoftWare InFrastructure and Technology for High Energy Physics

Analysis Systems
‘ introduction

| uke Kreczko for SWIFT-HEP WP5

.Vé University of
B BRISTOL

https://indico.cern.ch/event/1324606/#12-analysis-systems-introducti

Key points in HEP Data Analysis

Physics
Last mile of long chain of data recording and processing.

Goals:

Computing
Analysis workflow (data + software) depends on experiment, analysis group,

subset of data (signal + relevant backgrounds), analysis iteration.

WP5 key points

Seamless Access to Computing Resources

to distributed computing resources through user-friendly interfaces
and “industry standards”

Efficiency

for fast iterations, slelg 151187 for mapping algorithms to hardware
accelerators (GPU, FPGA)

Anatomy of an analysis workflow

The cycle (oversimplified)

Task Task Task [New idea/extension of }
existing work

Onecycle as
short asaday or

) [create/modify } 2s long as a
ol j L month
New |deas for
|mprovement [Run analysis on J
mistakes identified, or laptop/cluster/grid
updates

I[Understand }<:D
results
<

[Publication }

Analysis workflow SWIFT-HEP WP 5 in a nutshell

Task Task Task WP5 WP1

Analysis step
output

— 3

iR caching DIRAC
@ Data lake

| dafa_

| dafa_

Caching Opportunities: The intermediate data at various
stages of the workflow are opportune points for caching. By
storing these results, we can avoid redundant computations in
iterative analysis, thus saving time and resources.

Analysis workflow SWIFT-HEP WP 5 in a nutshell

Task Task Task WP5 WP1

Adaptive Algorithms: automatically
detect and utilize GPUs, FPGAs, and
other accelerators when available.

| dafa_
GPU Fallback Mechanism: In the absence of [}
capable specialized hardware, algorithms
revert to utilizing conventional CPUs —_—— e o ———— —]
= without compromising functionality. I Virtual Analysis Facility

Specialised hardware
(GPU, FPGA, etc)

I

g I

CPU-only portability :
|

|

‘a'n

The international view: IRIS-HEP

Scheduling
with .

| 14 |
] JupyterHub Instance | |
- i WE:(Se‘: 1™ Scﬁ:;tler (shared) i HIGoncor WO
! | 73 ; Dask
i Dask Jupyter } } i Worker
i Worker 2 kernel ; | = HTCondor
i er-user E g Scheduler
i CIMS Analysis® pod | HTCondor Worker
Uses Dask and dask-jobqueue : / E o
! ~— i Worker
i XCache : l
i Kubernetes (shared) P N |
: 'W___\ _____ |
A
Per-user 8 Core “CMS Analysis pod” Can scale up to available HTCondor
created on login (Dask scheduler slots on the T2 resource
container and Dask worker sidecar
container)

From coffea-casa docs

https://coffea-casa.readthedocs.io/en/latest/?badge=latest#
https://github.com/dask/dask-jobqueue

INFN: a CMS project

Istituto Nazionale di Fisica Nucleare

The overall idea, from where we started

Integration work of well established / ~ From Analysis
technologies - .
9 [MR } facilities forum
e JupyterHub (JHub) and JupyterLab (L]) (28.07.2022)
(JLab) to manage the user-facing part Yo Lab 000 oiLm o Lab
of the infrastructure el , el) O
e DASK to introduce the scaling over a A : J
batch system a N\
e XRootD as data access protocol 1) sctociier
toward AAA: R b
o Here we foresee the usage of caching layers]
(see later) 2 o (ﬁ v
) Worker 1) Worker |) Workar |
So far we opted for scaling over HTCondor: \f?ili D] (B e)
= User prioritization and in general e —

configuration tuning is under study

https://indico.cern.ch/event/1185992/contributions/4983141/attachments/2487021/4270377/HSF-Multi%20site%20AF%20model.pdf
https://indico.cern.ch/event/1185992/contributions/4983141/attachments/2487021/4270377/HSF-Multi%20site%20AF%20model.pdf

SWIFT-HEP + GridPP == experiment agnostic?

User’s Laptop

Python | Browser
7

Shared Jupyter-hub
viairis.ac.uk*

Virtual analysis facility

| (WP1)
As simple as adding e i
DIRAC jobqueue to [Data lake
- ? WP1
dask-jobqueue: e (P1)

*no relation to IRIS-HEP; **no relation to DIRAC

https://github.com/dask/dask-jobqueue

Roadmap overview
WP1

Datalake to Virtual analysis

DIRAC (via
Rucio)

facility

DIRAC Viatags
workflow (slide 26)

REST manager
API

Specify resource requirements
per analysis component

FileCatalog? (portability) 9

Dask to DIRAC

Connect to data
interface

lake (caching)g Sera] L WP5

analysis step

(b (1)

level

Closes example of what we want to achieve: Dask-based Distributed Analysis Facility
(kubernetes slides) 10

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://indico.cern.ch/event/1132360/contributions/4759822/attachments/2415720/4133601/Distributed%20Dask-based%20national%20facility%20at%20INFN%20-%20HSF%20-%20Mar%202022.pdf
https://indico.cern.ch/event/813749/contributions/3932529/attachments/2070924/3476556/gdb-k8s_2.pdf

Roadmap overview
WP1

Data lake to
DIRAC (v’
Rucio)

M O re O n t h i S i n y resource requirements
Sam'stalk & o

interface : a Iake(caching)g1 Caching at WP5

analysis step
level

(

Closes example of what we want to achieve: Dask-based Distributed Analysis Facility
(kubernetes slides) 11

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://indico.cern.ch/event/1132360/contributions/4759822/attachments/2415720/4133601/Distributed%20Dask-based%20national%20facility%20at%20INFN%20-%20HSF%20-%20Mar%202022.pdf
https://indico.cern.ch/event/813749/contributions/3932529/attachments/2070924/3476556/gdb-k8s_2.pdf

Analysis Grand Challenges

The medium for testing

Analysis Grand Challenges (IRIS-HEP)

IRIS-HEP are planning to verify work through several analysis grand challenges
Aiming for a realistic workflow, e.g.

Existing analysis, their example: Higgs — tau tau

Approx 200 TB of input data, their example: CMS NanoAOD
Testing performance (speed, resource usage)

Outputs: statistical inference, tables, control plots, HEP Data
Other metrics: reproducibility of results (e.g. with REANA)

— ACG repo: https://github.com/iris-hep/analysis-grand-challenge

13

https://reanahub.io/
https://github.com/iris-hep/analysis-grand-challenge

SWIFT-HEP Phase 2

Phase 2?

Phase 1is a technology
test/prototype

Phase 2 would be the
production system:

Jupyter-hub with IRIS
|IAM on STFC cloud***

Sample of analyses
beyond ACGs

Test phase 1 at scale

User’s Laptop

.

fl via iris.ac.uk*

1 Shared Jupyter-hub

—

5 Kubernetes

Cluster L

Can run on DiRAC**

Data lake
(WP1)

u

Virtual analysis facility
(WP1)

*no relation to IRIS-HEP; **no relation to DIRAC

***These could also be institutional resources with access to both local and GridPP resources

15

Phase 2 Roadmap overview

WP1
Data lake to . .
. Virtual analysis
UG (! facility .
Rucio)
DIRACX
workflow
manager
Jupyter-hub with UL Lo Dask-dirac
IRIS IAM 1) converter (to 2) interface WP5
Dask)

Would also include optimising caching and portability as analysis sample size increases.
In other words: phase 2 is a superset of phase 1.

16

Summary
and
Outlook

In Phase 1 WP5 aims for a prototype
demonstrating the key goals on WP1
deliverables

WP5 is in progress, using AGCs as
benchmark - details in Sam’s talk

Phase 2 will look towards a production

system:
e Extend capabilities beyond ACG benchmarks
to encompass wider analyses
e Integrate JupyterHub or an equivalent
platform to provide a user-friendly interface
for researchers.

17

https://indico.cern.ch/event/1324606/#13-analysis-facility-progress
https://docs.google.com/presentation/d/1BJji2QlunHPwR6xK1T-6Eo0N-vCF_uqV7RFkVQXuNeo/edit?usp=sharing

Backup slides

INFN: a CMS project

Istituto Nazionale di Fisica Nucleare

The overall idea, from where we started

Integration work of well established / ~ From Analysis
technologies - .
9 [MR } facilities forum
e JupyterHub (JHub) and JupyterLab (L]) (28.07.2022)
(JLab) to manage the user-facing part Yo Lab 000 oiLm o Lab
of the infrastructure el , el) O
e DASK to introduce the scaling over a A : J
batch system a N\
e XRootD as data access protocol 1) sctociier
toward AAA: R b
o Here we foresee the usage of caching layers]
(see later) 2 o (ﬁ v
) Worker 1) Worker |) Workar |
So far we opted for scaling over HTCondor: \f?ili D] (B e)
= User prioritization and in general e —

configuration tuning is under study

https://indico.cern.ch/event/1185992/contributions/4983141/attachments/2487021/4270377/HSF-Multi%20site%20AF%20model.pdf
https://indico.cern.ch/event/1185992/contributions/4983141/attachments/2487021/4270377/HSF-Multi%20site%20AF%20model.pdf

But:

[JHub Access Token, Service Ports}

S

7 ™ (v \ :
HTCondor Scheduler [Cm— i/ Worker
central components J f G
A Dashboard | H' S Wik
4 e
Submit S 5 Ly
SSH ¢
[y Plgin we | Forward | HTTP Controller | Scale
- Service = &+ J 7 Adapt
} .
S ' T Shutdown
e LN . k :
Hub [Access Token| (@
Site A
V
]"‘ SSH -1 <username>-PORT)
k8s cluster ", ssh.fwd.it -R PORT::PORT jupyter

spawn DASK clusters remotely w.r.t. to a JupyterLAB

Creation of custom components to add the capability to

Is there away to
standardize this
functionality and
make it available to
everyone?

20

Dask network layer simplified

Network A Network B (open port)

Connection proxy with N slots

Dask worker

Connection broker can reuse
connections

Network C

Client/user

21

Dask network layer simplified

Client Scheduler Worker

Connect via scheduler port

v

Connect via scheduler port

A

Send work via worker port

>

Share data via worker port

<--
Pull results via worker port
>
Pull results via scheduler port
Client Scheduler Worker

mermaid|s source

22

https://mermaid.live/edit#pako:eNqVkstugzAQRX_FGqk7ikwIjmGRTbqtVAmplSo2LgzBKrFTY5oH4t_rAInSJpt65XmcO_bVdJDrAiGBBr9aVDk-SbE2YpMp4s6qlqjs43KZ5hUWbY0mISutFOaWfEtBmnOabLWxI_OmzSea_zGXVoeNfEJSVAXZuWCgdkP2dsw1UAmDpBBW3CfuDXlp65oYbNraNvepexbcUH__BB5s0GyELJyz3UkoA1vhBjNI3LXAUjg2A--q9CqMFB81NqeebhyeQamVTeVxAmd0u8_gVOsndBrjl7Xe5c4A66wu5fqXxk4WthoFAkofJoFM9e6ZorU6PagcklLUDXrQbp2D5y24ZLGQVpvncVWGjfFgK9S71q7HmhaHEJIO9pCEkU8XIY8ixoNgsQjY3IMDJAELfcZZRDkL-SymlPUeHAcF6nMWsznnDqNRHMe8_wGK3tn-

Dask network layer simplified

Client

Connect via scheduler port

Scheduler

v

Pull results via scheduler port

Connect via s

heduler port

Worker

<
-

Send work vig

worker port

Pull results vi

Share data via worker port

worker port

>

v

Client

Scheduler

Worker

So where is the problem?

Imagine network boundary between
scheduler and workers

Scheduler port is accessible from
workers

Worker port is ONLY accessible to
scheduler if connection is recycled
(part of ESTABLISHED --> firewall
OK)

Default Dask operation: this can
happen at RANDOM (most likely
for small # of workers)

23

Dask network layer: A general fix

We know connections can be recycled and bypass firewall if they are part of an ESTABLISHED
connection

We also know of a working solution in our field: The HTCondor Connection Broker
Workers, schedulers, etc connect to a SHARED_PORT

As long as SHARED_PORT is open in firewall on a node accessible to both scheduler and workers
--> connection can be established

Most simple solution: Can the Dask Connection proxy be rewritten to hold worker connections?

What are the downsides for 100-1000 worker nodes?

24

CPU vs
accelerators

No clear optimal way yet, first draft
will require multiple versions of a
“stage”:

: my_module.my_stage
: my_module.my_stage_gpu

GPU versionis used if a GPU is
detected, CPU version otherwise

