A Study of Photon Propagation Acceleration

Keith Evans¹, James Michael Patrick Brady ¹, Olivia Alexandra Borgström², Sacha Barré¹, Yangyang Cui², Adam Davis¹, Joeseph Rodríguez Fernádez¹, Marco Gersabeck¹, Andrei Mihnea Ghira², Zahra Montazeri², Antonin Rat¹

¹Department of Physics, University of Manchester

²Department of Computer Science, University of Manchester

November 21, 2023

< 同 ト < 三

University of Manchester

- 1 Motivation
- 2 Mitsuba
- 3 Simulation Pipeline
- 4 Validation
- 5 Performance Scaling
- 6 Ongoing and Future Work
- 7 Summary
- 8 Technical

< 6 > <

프 + - 프 +

Ξ

University of Manchester

1 Motivation

2 Mitsuba

- 3 Simulation Pipeline
- 4 Validation
- 5 Performance Scaling
- 6 Ongoing and Future Work
- 7 Summary
- 8 Technical

Ξ

<ロト <回ト < 臣ト < 臣ト

Motivation

- HEP Simulations are crucial due to the size, complexity and sensitivity of detectors
- In LHCb RICH simulations represent a large fraction of computational expense
 - Issue: Propagation of Cherenkov Photons
 - This will be a problem for any simulation relying on optical photon propagation
 - General problem inside and outside HEP

- Particle propagation is a labour intensive problem due to stepping
 - Faster particle = smaller step
- Lends itself well to parallelisation
 - Every particle is independent of all others
- CPU parallelisation relatively easy
 - Imbalanced loads less important
 - Limited potential for speed up
- GPU Parallelisation more difficult
 - Load balancing extremely important
 - Speed up potential very high
 - TFLOPs vs GFLOPs
- Need to consider hetrogeneous hardware
 - Don't want all eggs in one basket

Load Balancing - Binary tree problem

The University of Manchester

University of Manchester

CPU Case

Motivation

- Core 1 propagates particle 1, Core 2 propagates particle 2
- Core 1 finishes first and moves on to particle 3...n
- GPU Case
 - Thread 1 propagates particle 1, Thread 2 propagates particle 2
 - Thread 1 finishes first and waits for thread 2

University of Manchester

1 Motivation

2 Mitsuba

- **3** Simulation Pipeline
- 4 Validation
- 5 Performance Scaling
- 6 Ongoing and Future Work
- 7 Summary
- 8 Technical

Ξ

<ロト <回ト < 臣ト < 臣ト

What is Mitsuba3

Mitsuba

Ine University of Manchester University of Manchester

- Physics based rendered
 - Represents light as rays
- Uses MC sampling to probabilistically determine pixel values
- Industrially recognised and widely used
- Open source
 - Under active development
- Accelerated using LLVM and CUDA
 - CUDA uses OptiX
 - LLVM uses Embree
 - Potential for AMD GPUs

< 67 > <

Mitsuba

"he University of Manchester

University of Manchester

Input

- XML
- Python
- Rendering
 - Parses geometry (scene)
 - Compiles optimised kernel (DRJIT)
 - CUDA + OptiX
 - LLVM + Embree
 - Emits and propagates (traces) photons (rays)
 - Constructs images applying camera effects
- Output
 - EXR
 - Numpy

< A > <

Image: A test in te

University of Manchester

1 Motivation

2 Mitsuba

3 Simulation Pipeline

- 4 Validation
- 5 Performance Scaling
- 6 Ongoing and Future Work
- 7 Summary
- 8 Technical

프 + - 프 +

E

University of Manchester

- Cherenkov emission by Geant4 translated into BIN file
- RICH simplified geometry exported in OBJ file
- XML reads BIN and OBJ file
- New photon emitter class used to emit photons in the scene

E

< ロト (同) (三) (三)

Detector Construction

Simulation Pipeline

MANCHESTER 1824

University of Manchester

First iteration created using inbuilt Mitsuba3 tools

Emitter : Spot

Ξ

Detector Construction 2

Simulation Pipeline

University of Manchester

Second iteration created using FreeCAD to convert GDML to OBJ
 Emitter : Photon

E

Photons

Simulation Pipeline

- Mitsuba emits light using "emitter" class objects
- Initial tests used "spot" emitter
 - 1 2 1 mapping of emitter instanciations
 - Caused excessive JIT compilation times
- New custom emitter "photon_emitter"
 - Single instanciation, reads photons from binary file
 - Reduced JIT compilation times to seconds from hours
 - Unintentionally fixed the geometry

University of Manchester

Validation

The University of Manchester

University of Manchester

1 Motivation

2 Mitsuba

3 Simulation Pipeline

4 Validation

- 5 Performance Scaling
- 6 Ongoing and Future Work
- 7 Summary
- 8 Technical

< □ > < □ > < □ > < □ >

 $< \pm >$

Ξ

Validation

Geant4 simulated 100GeV Muon

- Cherenkov Photons are written to file in binary format
 - (x,y,z,px,py,pz,λ)
- Mitsuba is called
 - Geometry read from OBJ files created earlier
 - Photons read from binary file by photon emitter
 - Output is numpy array
- Convert numpy to sparse matrix
 - (pixel_x, pixel_y)
- Change from Mitsuba detector reference frame to Geant4 reference frame

A Study of Photon Propagation Acceleration

Geant4 vs Mitsuba3 Validation

- - Cherenkov rings match well to Geant4
 - Differences are due to image processing
 - Mitsuba3 hits are are recorded as pixel values → threshold
 - Slight difference because Mitsuba3 hits are projections

Geant4 vs Mitsuba3 differences

The University of Manchester University of Manchester

Thresholding

Validation

- Mitsuba simulates "bloom" like effects creating more hits than photons
- Set a minimum pixel value such that: *Hits_{Mitsuba}* = *Hits_{Geant4}*

Geant4 vs Mitsuba3 differences

University of Manchester

Projections

Validation

- Mitsuba renders what a camera would see
- Need to specific distance from film, FOV etc
- These were calibrated

A D > A D >

E

=

Geant4 vs Mitsuba3 differences

The University of Manchester University of Manchester

Detectors

Validation

 Geant4 used a sensitive detector at the back of the PMTs

 Mitsuba used the front face of the logical volume

A D > A D >

E

=

University of Manchester

- 1 Motivation
- 2 Mitsuba
- 3 Simulation Pipeline
- 4 Validation
- 5 Performance Scaling
- 6 Ongoing and Future Work
- 7 Summary
- 8 Technical

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 + - 프 +

Ξ

The University of Manchester University of Manchester

Mitsuba

- Resampled Geant4 photons N times to create X total photons
- On CPU ran 1,2,4...20 thread renders with repeats
 - Intel Xeon 2.4Ghz with 20 cores
- On GPU repeated render 3 times
 - NVIDIA Tesla T4

Geant4

- Ran N events to create X total photons
- Timing is for propagation only
- Single thread Geant4 only

University of Manchester

Figure: Photon Propagation time for Geant4 and Mitsuba3 in various configurations

Ξ

(日) (四) (三) (三) (三)

- Mitsuba3 Render() time does not increase with photon count
- Mitsuba3 outperforms Geant4 (10.7.2)
 - 70 times faster on CPU (1 core)
 - 400 times faster on GPU or CPU (20 cores)
- Similar GPU and CPU performance due to compilation overhead

Figure: Photon Propagation time for Geant4 and Mitsuba3 in various configurations

∃ ⊳

- Rendering time not increasing with no. of photons (yet)
- Render() includes JIT, ptracer, image projection and IO
 - Timing seems to be dominated by these overheads
 - Devs have suggested we call the ptracer directly
- Expected that the ptracer will return similar scaling to Geant4 with lower timing
- Mitsuba3 is intersection parallelised
 - Solves the binary tree problem
- Paper : Optical Photon Simulation with Mitsuba3 https://arxiv.org/abs/2309.12496

< A > <

University of Manchester

1 Motivation

2 Mitsuba

3 Simulation Pipeline

4 Validation

5 Performance Scaling

6 Ongoing and Future Work

- 7 Summary
- 8 Technical

Ξ

(日) (문) (문) (문)

University of Manchester

Input

- Automated geometry conversion
- Direct Geant4 to Mitsuba photon offloading
- Output
 - Multiple detector read out
 - Direct ray output
- Middle Bit
 - Participating mediums (water etc)
 - Scintillation

< 10 k 4

Image: A test in te

E

Automated Geometry Conversion

University of Manchester

Ongoing and Future Work

- Ideal solution
 - Direct Geant4 geometry to Mitsuba geometry
 - Requires Geant4-2-Mitsuba data structure conversion
- Practically Ideal Solution
 - Convert GDML to OBJ files
 - Use OBJ files to construct geometry

Automated Geometry Conversion

Ongoing and Future Work

- Hierarchical scanning of GDML
 - Had to learn how to read GDMLs and construct separate world volumes
- Must create separate OBJ files
 - At least each material will need a separate BSDF to control optical properties
 - Bidirectional Scattering Distribution Function (BSDF)
 - Thin film and bulk materials may require BSDFs

Multiple Detectors

University of Manchester

- Previously we have simplified our renders replacing many PMTs with a single film
 - Will not work for more complex geometries
- Working towards reading multiple films at once
- Pipeline : Image(s)
 - $\rightarrow \mathsf{Sparse}\ \mathsf{Matrix}$
 - \rightarrow Reference frame change
 - \rightarrow Combine

< 67 ▶

University of Manchester

1 Motivation

2 Mitsuba

3 Simulation Pipeline

4 Validation

- 5 Performance Scaling
- 6 Ongoing and Future Work

7 Summary

8 Technical

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 + - 프 +

Ξ

Summary

- Mitsuba is an open source physics based renderer
- Successfully setup a working testing pipeline
- Confirmed that Mitsuba can produce science quality results
- Mitsuba show impressive performance results on both CPU and GPU far exceeding Geant
- Paper has been submitted
 - And rejected
- Currently working on geometry translation and building more complex examples

University of Manchester

1 Motivation

2 Mitsuba

- **3** Simulation Pipeline
- 4 Validation
- 5 Performance Scaling
- 6 Ongoing and Future Work
- 7 Summary
- 8 Technical

Ξ

(日) (문) (문) (문)

Technical

The University of Manchester

University of Manchester

- CPU : Intel(R) Xeon(R) Silver 4210R
 - 2.40 GHz
 - 20 Cores
- GPU : NVIDIA Tesla T4
 - 70W Low Power GPU
 - 16GB GDDR6
 - 2560 CUDA Cores
 - 40 RT Cores
 - 585 MHz Base Clock (1590MHz Boost)

 $< \pm >$

Image: Image:

E