
DIRAC update

J. Martyniak, S. Fayer & D. Bauer

Introduction

● What is DIRAC and how does it fit within the SwiftHEP remit ?
● SwiftHEP: Things that worked (eventually)
● SwiftHEP: And one thing that didn’t
● What we are going to do next

What is DIRAC ?
● DIRAC was originally developed by LHCb as a Monte Carlo production system.
● The DIRAC consortium was founded in 2014 to enable adoption by other communities.

The UK joined the consortium in 2019.
● Open source: https://github.com/DIRACGrid/DIRAC
● Documentation: https://dirac.readthedocs.io/en/latest/
● DIRAC comprises of:

○ Workload Management System
○ File Catalog/Data Management System
○ Workflow Management System

● Provides a standardised user interface to multiple compute (grid & cloud) and storage
resources.

○ Outside the SwiftHEP remit: UK contribution has focused on multi-VO and clouds
○ SwiftHEP: PilotLogging, Workflow, User Interface and Integration with WP5 (Analysis

Systems)

https://github.com/DIRACGrid/DIRAC
https://dirac.readthedocs.io/en/latest/

Status: What worked…..
● Past work: User friendly commands

○ For VOs too small to write their own production frontend, but too big to make do
with low level commands.

○ Work done in conjunction with EGI, who faced a similar issue
○ SwiftHEP 1.8: Merged February 2023

● Past work: Pilot logging (though that turned out a bit more complicated
than anticipated - see next slide)
○ Pilot logs are crucial to debug site problems
○ DIRAC used a pull model:

■ Pilots logs often lost in crashes: Just when needed the most !
■ No cloud logging

○ SwiftHEP 1.5: Changed to a push model, much safer that way

Things we learned about pilot logging

● An existing, unfinished (but merged!) remote pilot logging system could not really
be used as a base of a new development.

● We opted for a system with configurable, pluggable back-ends with a Web Server
as an intermediate log consumer.

● This required work on both the pilot (Python 2&3) and the Dirac server.
● We changed the way pilots are configured - this is now done reading a JSON file.

This works both for Dirac-submitted pilots and “vacuum” pilots submitted by a shell
script (a requirement by LHCb).

● The system is truly multi VO. Logging can be independently configured on a
VO-by-VO basis.

● Log file retrieval is configurable and transparent to a user (both cmd line and
WebApp).

Status: What worked….

● Recent work: Workflow improvements
○ DIRAC has an inbuilt system to allow users to chain operations

together:
■ Metadata driven
■ Decidedly not multi-VO compatible it turned out
■ All fixed now

○ SwiftHEP 1.6: Code merged August 2023
○ Deployed in production at GridPP DIRAC

Status: And what didn’t …..
● Workload management system fairly basic:

○ Jobs bound to sites quite early in submission process.
○ Target site immutable after submission and binding.

● Not flexible enough for large infrastructures, e.g.:
○ Unexpected changes in target site capacities (both up and down).
○ Misunderstandings lead to users submitting large batches of jobs to

unsuitable target.
● This is not just a UK issue: Belle II sees the same problem.
● As it turns out this is technically infeasible: Once the job description is stored

in the database, there is no interface to reprocess or update it; a significant
modification to the DIRAC workload manager would be required.
○ This complexity for a basic system is part of the legacy code in DIRAC…

https://indico.cern.ch/event/1252369/contributions/5515344/attachments/2734452/4754434/2023-10-16%20-%20Belle%20II%20report.pdf

DiracX (the neXt DIRAC incarnation)*

● Last conceptual overhaul in 2008: DIRAC becomes a “multi-VO
community solution”

● Regular updates within this framework:
○ python 2 to python 3
○ dashboards: ES/Kibana/Grafana
○ ongoing: implementing token support, identity providers: IAM, Checkin

■ In the UK this will have to be covered under GridPP/Operations for the time being.
○ ongoing: replacing DISET (DIRAC’s very own proprietary protocol for

RPC calls) to HTTPS

* For the record: We did not have any input on the naming scheme ;-)

DiracX

● Technological debt in DIRAC codebase threatened to
overwhelm available maintenance effort.

● Aim to use current standards in place of old bespoke
solutions:
○ REST/HTTPs interfaces for everything in place of DISET
○ SQAlchemy instead of custom written SQL statements
○ Designed with current requirements rather than grown organically

● https://github.com/DIRACGrid/diracx/discussions

How does DiracX fit in with WP5 ?

from Sam Eriksen

That bit needs some
work.

DiracX
● DiracX ties in with SwiftHEP work-packages:

○ Interoperability is key in tying everything together:
■ “SwiftHEP is all about integrating stuff”

○ Partial redesign allows us to include requirements and use-cases
which didn’t easily fit into old code base.

● Example: WP5 Analysis
○ Currently uses prototype REST interface on DIRAC for workload

management, basics are there but multiple difficult edge cases:
■ Proxy & sandbox management still require special consideration and

support.
○ DiracX will have REST for all interfaces, no special cases.

DIRAC release timeline

May 2024

from:
F.Stagni,
 Status of DIRAC projects,
DIRAC & Rucio Workshop,
Oct 2023

July 2023:
GridPP DIRAC
Upgrade to v8.0

https://indico.cern.ch/event/1252369/contributions/5515343/attachments/2734451/4754433/Intro%20(5).pdf
https://indico.cern.ch/event/1252369/contributions/5515343/attachments/2734451/4754433/Intro%20(5).pdf
https://indico.cern.ch/event/1252369/contributions/5515343/attachments/2734451/4754433/Intro%20(5).pdf
https://indico.cern.ch/event/1252369/contributions/5515343/attachments/2734451/4754433/Intro%20(5).pdf

Conclusions

● WP1.5, 1.6 & 1.8 Complete.
● Original WP1.7 plan not achievable.
● Replacement for WP1.7 proposed:

○ Use new DiracX services to provides REST interfaces for external
tooling.

○ Links very well with WP5 requirements in both scope &
timeframe.

