
1Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Activities on SWIFT-HEP:
Running a cmssw algorithm on an FPGA

Alison Elliot (STFC-RAL)
Sam Harper (STFC-RAL)

2Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

FPGA card

3Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

running kernels on the FPGA

● To run a bit of code on an FPGA, we need to translate it into something
that the FPGA will understand, and that can be called externally

● Using Vitas HLS to translate chunks of code into FPGA-readable binaries
or kernels

● These binaries can then be used alongside c++ code, including them as
extra data

● The Xilinx FPGA boards have ‘runtime libraries’ (xrt), enabling them to
be included inside of a regular c++ job, and can run over the binaries that
the HLS has translated from c++

4Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

CMSSW Primer
● CMSSW is the CMS software responsible for running all

reconstruction/HLT/analysis jobs in CMS
● operates on a event data model, a CMSSW job consists of multiple

independent modules which produce, filter and analyse products
in the event
○ a product is some collection of data, eg EcalRecHits
○ modules can only communicate by reading/writing immutable

products to/from the event
● fully multithreaded since 2015

○ has both inter event and intra event multithreading
○ intra module multithreading is also possible
○ typically runs with a large number of streams with each stream

processing an event so multiple events are processed in parallel
● has full support for offloading to GPUs and other devices

Event

ModA
produces foos

ModB
reads foos

produces bars

foos

foos bars

5Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Set up on CMSSW for FPGA Kernels
● Communication is done by the Xilinx Runtime Library

(XRT)
○ https://www.xilinx.com/products/design-tools/vitis/xrt.html
○ https://github.com/Xilinx/XRT Apache 2.0 licence

● allows c++ programs to call FPGA kernels loaded on the
FPGA

● pure c++, treat like any other external tool in CMSSW
○ cavate, it needs to be installed under /opt/xilinx/

● steps to include in CMSSW
○ 1) compile xrt with appropriate gcc version to allow

linking against CMSSW release (currently gcc11 on
slc7)

○ 2) tell CMSSW build system to link against the
compiled libraries and where to find the headers

package build file, currently hacking it by hard
coding the locations for now

will obviously need to integrated it into the scram
build system

https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://github.com/Xilinx/XRT

6Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Running FPGA Kernels in CMSSW
● CMSSW has the concept of “ExternalWork” which allows offloading to a device

○ https://twiki.cern.ch/twiki/bin/view/CMSPublic/FWMultithreadedFrameworkGlobalModuleInterfac
e#edm_ExternalWork

○ currently used for CMS GPU modules, but applicable to any device
● has a special “acquire” function which sends non-blocking work to device
● once this has completed, the produce function places it in the event

○ “normal” modules would only have the produce function

https://twiki.cern.ch/twiki/bin/view/CMSPublic/FWMultithreadedFrameworkGlobalModuleInterface#edm_ExternalWork
https://twiki.cern.ch/twiki/bin/view/CMSPublic/FWMultithreadedFrameworkGlobalModuleInterface#edm_ExternalWork

7Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

● initialize FPGA:

● create a kernel instance to call

● create a buffer object to manage host/device memory

● sync data to FPGA, run and sync back the results

Running FPGA Kernels in CMSSW

8Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Intro to the algorithm in CMSSW
● CMS ECAL weights for Run-2 and beyond:

○ The multifit algorithm is an amplitude reconstruction algorithm
modelling a pulse as a sum of in-time and out-of-time pulses

○ The core of the algorithm is the summation of amplitudes x weights over
the pulse shape inside of a calorimeter crystal

○ This algorithm is run over the >60k crystals in the barrel of CMS ECAL

9Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

First iteration of the algorithm

To begin, I took the core of the calculation and translated that to run on the
FPGA with Vitas HLS:

 float sumA = 0;
 float sumT = 0;

 for(int i = 0; i < size; ++i)
 {
 if(in2a[i]==1) *outG=1;
 sumA = sumA + in0a[i] * in1a[i] * (float)in2a[i];
 sumT = sumT + in0t[i] * in1a[i] * (float)in2a[i];
 }
 *outA = sumA;
 *outT = sumT;

This algorithm is then run per crystal on the CMS ECAL barrel

10Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

First iteration timing

… SLOW!

Not measured, because it obviously slowed things to unusable levels.
I estimate that the performance was down to the order of 1 event per
second

Made the assumption that calling the FPGA to do a calculation 60k times
per event might be the issue

The algorithm can be modified…

11Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Algorithm updated
The updated version used arrays of all the numbers, to do all of the calculations
at once, and return an array of results, the core becomes:

 float sumA = 0;
 float sumT = 0;

 for(int j=0; j<N; ++j){
 sumA = 0;
 sumT = 0;

 for(int i = 0; i < size; ++i){
 if(*(&in2a[i]+j*size)==1) *(&outG[j])=1;
 sumA = sumA + (*(&in0a[i]) * (float)*(&in1a[i]+(j*size)) * (float)*(&in2a[i]+(j*size)));
 sumT = sumT + (*(&in0t[i]) * (float)*(&in1a[i]+(j*size)) * (float)*(&in2a[i]+(j*size)));
 }

 *(&outA[j]) = sumA;
 *(&outT[j]) = sumT;

12Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Algorithm updated

● The updated version used arrays of all the
numbers, enabling the calculation to be done
over all of the crystals all at once.

● The amplitudes then can be trivially sent to
the calculation for the reconstructed hits
inside of the calorimeter

● Satisfying to compare the values calculated
from CPU algorithm and FPGA algorithm →

● How about the timing? Well, a few things
first…

13Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Benchmarking Setup

reference ECAL RecHits Producer exists for CPU, GPU (heavy RAL involvement,
alpaka version ready for 2024) and FPGA
● run each producer flavor + another module which exists to load the CPU so it

other work to do
○ run with 8 threads, 8 events processed in parallel (“streams”)
○ GPU:A100, FPGA u250, CPU: Intel(R) Xeon(R) Gold 6242R CPU @

3.10GHz
● look at individual module times to get a feel of the relative times
caveat: these numbers are preliminary and are indicative only, need to develop more
realistic benchmark

14Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Timing Results
● currently slightly more CPU usage offloading to

FPGA
○ offloading module highly unoptimised, expect

this to significantly improve
○ the algorithm was chosen for its simplicity,

more complicated ones may get more of a
speed up

● key thing is that FPGA represents a large latency
○ trick will be ensuring that there is plenty of

other work for the CPU to do while waiting for
FPGA calculation to complete

○ need to figure out efficient ways of running this
and characterise limitations

15Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Timing Results
● currently slightly more CPU usage offloading to

FPGA
○ offloading module highly unoptimised, expect

this to significantly improve
○ the algorithm was chosen for its simplicity,

more complicated ones may get more of a
speed up

● key thing is that FPGA represents a large latency
○ trick will be ensuring that there is plenty of

other work for the CPU to do while waiting for
FPGA calculation to complete

○ need to figure out efficient ways of running this
and characterise limitations

latency of FPGA

16Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Results
● Without further setup, running a single thread, running the FPGA takes

approximately 5x the CPU alone

● running 8 threads, 8 streams in parallel writing the collection to disk throughput:
● CPU: 5.7± 0.1 ev/s
● FPGA: 5.7 ± 0.1 ev/s
● GPU: 6.2 ± 0.2 ev/s

note: this was heavily IO bound, doing further tests indicated that FPGA code had a
max throughput of 8.8ev/s

● highly dependent on keeping the CPU busy with other things while we wait for
the FPGA to return the result

● work is ongoing to optimise and understand this

17Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Future work
● The timing results are needs some careful investigation with multi-threading and

offloading in a more realistic job – How to report events/s need careful thought!!
● The workflow took a while to develop across the cmssw software and the HLS

algorithms, but now that this is in place, a more complicated and realistic benchmark
can be tackled
○ Synergy and interest inside cms group for work on:

■ Tracking algorithms
■ ECAL algorithms

○ These more complicated algorithms have expertise that can be drawn from for
comparison and performance

● Will continue to document the process of translating a c++ algorithm into something
translatable for an FPGA

18Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

backup

19Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

First iteration (full code)
extern "C" {

void vamp(
 const float *in0a, // Read-Only Vector 1
 const float *in1a, // Read-Only Vector 2
 const unsigned int *in2a, // Read-Only Vector 3
 const float *in0t, // Read-Only Vector 1
 float *outA, // Output Result
 float *outT, // Output Result
 int *outG, // Output Result
 int size // Size in integer
)
{

#pragma HLS INTERFACE m_axi port=in0a bundle=aximm0
#pragma HLS INTERFACE m_axi port=in1a bundle=aximm1
#pragma HLS INTERFACE m_axi port=in2a bundle=aximm2
#pragma HLS INTERFACE m_axi port=in0t bundle=aximm2
#pragma HLS INTERFACE m_axi port=outA bundle=aximm3
#pragma HLS INTERFACE m_axi port=outT bundle=aximm3
#pragma HLS INTERFACE m_axi port=outG bundle=aximm3

 float sumA = 0;
 float sumT = 0;

 for(int i = 0; i < size; ++i)
 {
 if(in2a[i]==1) *outG=1;
 sumA = sumA + in0a[i] * in1a[i] * (float)in2a[i];
 sumT = sumT + in0t[i] * in1a[i] * (float)in2a[i];
 }
 *outA = sumA;
 *outT = sumT;
}

}

20Alison A Elliot (RAL) SWIFT-HEP Workshop #6 – Bristol 21-22 Nov 2023

Second iteration (full code)
extern "C" {

void varr(
 const float *in0a, // Read-Only Vector 1
 const int *in1a, // Read-Only Vector 2
 const int *in2a, // Read-Only Vector 3
 const float *in0t, // Read-Only Vector 1
 float *outA, // Output Result
 float *outT, // Output Result
 int *outG, // Output Result
 int N, //N is number of arrays (aka, the number of digits or crystals)
 int size ///size is the number of samples (size of the array in0a or in0t)
)
{

#pragma HLS INTERFACE m_axi port=in0a bundle=aximm0
#pragma HLS INTERFACE m_axi port=in1a bundle=aximm1
#pragma HLS INTERFACE m_axi port=in2a bundle=aximm2
#pragma HLS INTERFACE m_axi port=in0t bundle=aximm2
#pragma HLS INTERFACE m_axi port=outA bundle=aximm3
#pragma HLS INTERFACE m_axi port=outT bundle=aximm3
#pragma HLS INTERFACE m_axi port=outG bundle=aximm3

 float sumA = 0;
 float sumT = 0;
 for(int j=0; j<N; ++j){
 sumA = 0;
 sumT = 0;
 for(int i = 0; i < size; ++i){
 if(*(&in2a[i]+j*size)==1) *(&outG[j])=1;
 sumA = sumA + (*(&in0a[i]) * (float)*(&in1a[i]+(j*size)) * (float)*(&in2a[i]+(j*size)));
 sumT = sumT + (*(&in0t[i]) * (float)*(&in1a[i]+(j*size)) * (float)*(&in2a[i]+(j*size)));
 }
 *(&outA[j]) = sumA;
 *(&outT[j]) = sumT;
 }
}

}

