Science and SWIFT\
Technology HEP
Facilities Council

Activities on SWIFT-HEP:
Running a cmssw algorithm on an FPGA

Alison Elliot (STFC-RAL)
Sam Harper (STFC-RAL)

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 1
- 0 0 0

Science and
Technology
Facilities Council

Alison A Elliot (RAL)

FPGA card

U250
Specification Active Cooling Passive Cooling
Version Version

Product SKU A-U250-A64G-PQ-G A-U250-P64G-PQ-G
Thermal cooling solution Active Passive
Weight 1122¢g 10669
Eorin factor Full he;igglt,v&JC:ItLength, Full height\;vz‘;':ﬁngth, dual
Total electrical card load’ 215W
Network interface 2x QSFP28
PCle Interface Gen3 x16
Look-up tables (LUTs) 1,728K
Registers 3,456K
DSP slices 12,288
UltraRAMs 1,280
DDR total capacity 64 GB
DDR maximum data rate 2400 MT/s
DDR total bandwidth 77 GB/s

SWIFT-HEP Workshop #6 — Bristol

SWIFT

21-22 Nov 2023

HEP

2

% Technology : SWIFT _
Facilities%%uncil I'unnlng kemels on the FPGA HEP

e To run a bit of code on an FPGA, we need to translate 1t into something
that the FPGA will understand, and that can be called externally

e Using Vitas HLS to translate chunks of code into FPGA-readable binaries
or kernels

e These binaries can then be used alongside c++ code, including them as
extra data

e The Xilinx FPGA boards have ‘runtime libraries’ (xrt), enabling them to
be included 1nside of a regular ¢++ job, and can run over the binaries that
the HLS has translated from c++

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023

Science and
Facilities Souncil CMSSW Primer

e CMSSW is the CMS software responsible for running all
reconstruction/HLT/analysis jobs in CMS
e operates on a event data model, a CMSSW job consists of multiple
independent modules which produce, filter and analyse products
in the event
o a product 1s some collection of data, eg EcalRecHits
o modules can only communicate by reading/writing immutable
products to/from the event
e fully multithreaded since 2015
o has both inter event and intra event multithreading
o 1ntra module multithreading 1s also possible
o typically runs with a large number of streams with each stream
processing an event so multiple events are processed 1n parallel
e has full support for offloading to GPUs and other devices

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol

SWIFT
HEP

|

ModA
produces foos

foos l

|

Event }

foos l T bars

|

ModB
reads foos

produces bars

21-22 Nov 2023 4

L
Science and N\ -
R oy e St up on CMSSW for FPGA Kernels S%

e Communication is done by the Xilinx Runtime Library

()(lzir) <use name="DataFormats/EcalRecHit"/>
<flags CXXFLAGS="-I/opt/xilinx/xrt slc7 amd64 gccll//o

O https://www.xilinx.com/products/design-tools/vitis/xrt.html ipt/xilinx/xrt/include/ -L//opt/xilinx/xrt_slc7_and64_g
< iccll/opt/xilinx/xrt/lib -1xrt coreutil"/>

o https://github.com/Xilinx/XRT Apache 2.0 licence <flags EDM PLUGIN="1"/>
e allows c++ programs to call FPGA kernels loaded on the
FPGA package build file, currently hacking it by hard

. . coding the locations for now
® pure ct++, treat like any other external tool iIn CMSSW

o cavate, it needs to be installed under /opt/xilinx/
e steps to include in CMSSW
o 1) compile xrt with appropriate gcc version to allow
linking against CMSSW release (currently gccll on
slc7)
o 2)tell CMSSW build system to link against the
compiled libraries and where to find the headers

will obviously need to integrated it into the scram
build system

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 5

https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://github.com/Xilinx/XRT

L

Science and

o mer - Running FPGA Kernels in CMS Sws%

e CMSSW has the concept of “External Work™ which allows offloading to a device
o https://twiki.cern.ch/twiki/bin/view/CMSPublic/FWMultithreadedFrameworkGlobalModulelnterfac

e##edm_ExternalWork

o currently used for CMS GPU modules, but applicable to any device
e has a special “acquire” function which sends non-blocking work to device
e once this has completed, the produce function places it in the event

o ‘“normal” modules would only have the produce function

class RALFPGATestProducerPhII : public edm::stream::EDProducer<edm: :ExternalWork> {
public:
explicit RALFPGATestProducerPhII(edm::ParameterSet const& ps);
~RALFPGATestProducerPhII() override = default;
static void fillDescriptions(edm::ConfigurationDescriptionsé&);

private:
void beginStream(edm::StreamID) override;
void acquire(edm::Event const&, edm::EventSetup const&, edm::WaitingTaskWithArenaHolder) overridei

void produce(edm::Event&, edm::EventSetup const&) override;

i

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 6
- 0 0 0

https://twiki.cern.ch/twiki/bin/view/CMSPublic/FWMultithreadedFrameworkGlobalModuleInterface#edm_ExternalWork
https://twiki.cern.ch/twiki/bin/view/CMSPublic/FWMultithreadedFrameworkGlobalModuleInterface#edm_ExternalWork

I
% ?:::ehr:\ﬁozr;d . . SWIFT
Facilities Council Runnlng FPGA KCI’IICIS 11 CMSS VV HEP

e 1nitialize FPGA:

void RALFPGATestProducerPhII: :beginStream(edm: :StreamlD){
device = xrt::device(devicelndex);
edm: :FileInPath xclbinName("RALFPGATest/FPGATest/data/varr.xclbin");
uuid = device .load xclbin(xclbinName.fullPath());

}
e create a kernel instance to call

auto krnl = xrt::kernel(device , uuid , "varr");
e crecate a buffer object to manage host/device memory

auto boInBa = xrt::bo(device , vector size bytes, krnl.group id(@©)):

e sync data to FPGA, run and sync back the results

boInBa.sync(XCL BO SYNC BO TO DEVICE);

auto run = krnl(boIn@a, bolInla, boIn2a, boIn®t, boOutA, boOutT, boOutG, nDigis, nSamples);
run.wait();

boOutA.sync(XCL BO SYNC BO FROM DEVICE);

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 /

UK ey W SWIFT (o
e e Intro to the algorithm in CMSSW _

e CMS ECAL weights for Run-2 and beyond:

O

The multifit algorithm is an amplitude reconstruction algorithm
modelling a pulse as a sum of in-time and out-of-time pulses

The core of the algorithm 1s the summation of amplitudes x weights over
the pulse shape inside of a calorimeter crystal

This algorithm 1s run over the >60k crystals in the barrel of CMS ECAL
3] SO e
;5/ 1 i é_” — Multt?fit BX0-3
3 8 || s
%— 0.8 g L | —— Multifit BXO
a 0.1F L— Multifit Tota/l\
S £

o
o2}

© ¢
~
-

0.05|

o
N
—

nnnnnnnnnnnnnnnnnnnnn

time sample time sample
Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 8

1
UK i ot iterats - SWIFT (e
Facitias Souncil First 1iteration of the algorithm

To begin, I took the core of the calculation and translated that to run on the
FPGA with Vitas HLS:

float sumA = 0;
float sumT = 0;

for(int 1 = 0; 1 < s1ze; ++1)
d
if(1in2a[1]==1) *outG=1;
sumA = sumA + 1n0a[i] * inla[1] * (float)in2a[i];
sumT = sumT + 1n0t[1] * inla[1] * (float)in2a]1];
h
*outA = sumA;
*outT = sumT;

This algorithm 1s then run per crystal on the CMS ECAL barrel

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 °

1
gf Tochnology. ot SN SWIFT \f o
Facilities Council First 1iteration timing
... SLOW!

Not measured, because 1t obviously slowed things to unusable levels.
I estimate that the performance was down to the order of 1 event per
second

Made the assumption that calling the FPGA to do a calculation 60k times
per event might be the 1ssue

The algorithm can be modified...

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 10

Science and . SWIFT
Facillties Council Algorithm updated /7%

The updated version used arrays of all the numbers, to do all of the calculations
at once, and return an array of results, the core becomes:

float sumA = 0;
float sumT = 0;

for(int j=0; j<N; ++)){
sumA = 0;
sumT = 0;

for(int 1= 0; 1 < size; ++1){
if(*(&in2a[1]+j*size)==1) *(&outGJ[j])=1;
sumA = sumA + (*(&in0a[1]) * (float)*(&inla[i]+(j*size)) * (float)™*(&in2a[1]+(j*s1ze)));
sumT = sumT + (*(&inOt[i]) * (float)*(&inla[1]+(j*size)) * (float)*(&in2a[1]+(j*size)));
)

*(&outA[j]) = sumA;
*(&outT[j]) = sumT;

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 1

Science and . SWIFT
Facities Council Algorithm updated /7%

e The updated version used arrays of all the 8 b R
numbers, enabling the calculation to be done 5§ .Fe - CPUProduced -
100 —o— FPGA Produced =
over all of the crystals all at once. = E
10° =
e The amplitudes then can be trivially sent to ot =
the calculation for the reconstructed hits 103?_ . _;
inside of the calorimeter = '”\ =
10° (g -
. . = *%se =
e Satisfying to compare the values calculated oF e o — .
from CPU algorithm and FPGA algorithm — = e +T ¢t WW %T*T %
1=

e How about the timing? Well, a few things 0 200 400 600 800 1000 1200 1400 1600 1800 2000

first. .. RecHit Hit Amplitude

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 12

[
UK i - SWIFT (e
Facilities Council BenChmarklng SetUP

reference ECAL RecHits Producer exists for CPU, GPU (heavy RAL involvement,
alpaka version ready for 2024) and FPGA

e run each producer flavor + another module which exists to load the CPU so it
other work to do

o run with 8 threads, 8 events processed 1n parallel (“streams”)

o GPU:A100, FPGA u250, CPU: Intel(R) Xeon(R) Gold 6242R CPU @
3.10GHz

e ook at individual module times to get a feel of the relative times

caveat: these numbers are preliminary and are indicative only, need to develop more
realistic benchmark

Alison A Elliot (RAL SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 13
p

Science and
Technology
Facilities Council

Timing Results

e currently slightly more CPU usage offloading to

FPGA

o offloading module highly unoptimised, expect

this to significantly improve

o the algorithm was chosen for its simplicity, 2000
more complicated ones may get more of a

speed up

e key thing 1s that FPGA represents a large latency
o trick will be ensuring that there 1s plenty of 500
other work for the CPU to do while waiting for

FPGA calculation to complete

SWIFT
HEP

3000

events/ 1.0 ms

2500

1500

1000

IIIIIIIII|III||IIII|IIII|IIII|III

CPU Time To Produce Uncalibrated RecHits
| | | I I I I | I I I

—e— FPGA Module

—e— CPU Module

%4 |

IIIIIIIII|IIII|IIII|IIII|I|II|III

o

o need to figure out efficient ways of running this

and characterise limitations

Alison A Elliot (RAL)

SWIFT-HEP Workshop #6 — Bristol

10

20 30 40 50

60

processing time [ms]

21-22 Nov 2023

Science and
Technology
Facilities Council

e currently slightly more CPU usage offloading to
FPGA
o offloading module highly unoptimised, expect
this to significantly improve
o the algorithm was chosen for its simplicity,
more complicated ones may get more of a
speed up
e key thing 1s that FPGA represents a large latency
o trick will be ensuring that there 1s plenty of
other work for the CPU to do while waiting for
FPGA calculation to complete
o need to figure out efficient ways of running this
and characterise limitations

events/ 1.0 ms

Alison A Elliot (RAL)

Timing Results

200
180
160
140
120

100

& o o
o o o

&2 ||||||||II|||||||||

A}
o O

SWIFT-HEP Workshop #6 — Bristol

SWIFT
HEP

FPGA Uncalibrated RecHits Times

|I|I||||||||||I|‘|II|I

Illllllllllllllll

—— FPGA Thread Time

—e— FPGA Real Time

latency of FPGA

=

i

| I 1 | | 1 | L1 | | [|

I

5
o

60 80 100 120

21-22 Nov 2023

140

III|I||‘I|I|III|III|III|III|II|||||‘III|I

processing time [ms]

i
(|
Science and N
SWIFT
Technology HEP
Facilities Council Re SUItS /7%

e Without further setup, running a single thread, running the FPGA takes
approximately 5x the CPU alone

e running 8§ threads, 8 streams 1n parallel writing the collection to disk throughput:
e CPU: 5.7£0.1 ev/s

e FPGA: 5.7+£0.1 ev/s
e GPU:6.2+0.2 ev/s

note: this was heavily 10 bound, doing further tests indicated that FPGA code had a
max throughput of 8.8ev/s

e highly dependent on keeping the CPU busy with other things while we wait for
the FPGA to return the result

e work 1s ongoing to optimise and understand this

Alison A Elliot (RAL SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 16
p

% Science and SWIFT\
Technology HEP
Facilities Council Future “’ Ol‘k

e The timing results are needs some careful investigation with multi-threading and
offloading 1in a more realistic job — How to report events/s need careful thought!!

e The workflow took a while to develop across the cmssw software and the HLS

algorithms, but now that this 1s 1n place, a more complicated and realistic benchmark
can be tackled

o Synergy and interest inside cms group for work on:

m Tracking algorithms
m ECAL algorithms

o These more complicated algorithms have expertise that can be drawn from for
comparison and performance

e Will continue to document the process of translating a c++ algorithm into something
translatable for an FPGA

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 17

Science and SWIFT\
Technology HEP
Facilities Council

backup

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 18
e

Science and SWIFT\

Facilities Council First 1iteration (full code) HEP

extern "C" {
void vamp(

const float *in0Oa, // Read-Only Vector 1

const float *inla, // Read-Only Vector 2

const unsigned int *in2a, // Read-Only Vector 3
const float *in0t, // Read-Only Vector 1

float *outA, // Output Result

float *outT, // Output Result

int *outG, // Output Result
int size // Size in integer
)

{
#pragma HLS INTERFACE m_axi port=inOa bundle=aximmO

#pragma HLS INTERFACE m_axi port=inla bundle=aximm1
#pragma HLS INTERFACE m_axi port=in2a bundle=aximm?2
#pragma HLS INTERFACE m_axi port=inOt bundle=aximm?2
#pragma HLS INTERFACE m_axi port=outA bundle=aximm3
#pragma HLS INTERFACE m_axi port=outT bundle=aximm3
#pragma HLS INTERFACE m_axi port=outG bundle=aximm3

float sumA = 0;

float sumT = 0;

for(int 1 = 0; 1 < size; ++1)
{
if(in2a[i]==1) *outG=1;
sumA = sumA + in0Oa[i] * inla[i] * (float)in2a[i];
sumT = sumT + inOt[i] * inla[i] * (float)in2a[i];
b
*OutA = sumA;
*outT = sumT;

}

Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 19

Science and SWIFT\

Factities Gounci Second 1teration (full code) HEP

extern "C" {
void varr(
const float *in0Oa, // Read-Only Vector 1
const int *inla, // Read-Only Vector 2
const int *in2a, // Read-Only Vector 3
const float *in0t, // Read-Only Vector 1
float *outA, // Output Result
float *outT, // Output Result

int *outG, // Output Result

int N, //N is number of arrays (aka, the number of digits or crystals)
int size /l/size 1s the number of samples (size of the array inOa or in0Ot)
)

{
#pragma HLS INTERFACE m_axi port=inOa bundle=aximmO

#pragma HLS INTERFACE m_axi port=inla bundle=aximm1
#pragma HLS INTERFACE m_axi port=in2a bundle=aximm?2
#pragma HLS INTERFACE m_axi port=inOt bundle=aximm?2
#pragma HLS INTERFACE m_axi port=outA bundle=aximm3
#pragma HLS INTERFACE m_axi port=outT bundle=aximm3
#pragma HLS INTERFACE m_axi port=outG bundle=aximm3

float sumA = 0;
float sumT = 0;
for(int j=0; j<N; ++j){
sumA = 0;
sumT = 0;
for(int 1 = 0; 1 < size; ++1){
if(*(&in2a[i]+j*size)==1) *(&outG[j])=1;
sumA = sumA + (*(&in0Oa[i]) * (float)*(&inla[i]+(*size)) * (float)*(&in2a[i]+(j*size)));
sumT = sumT + (*(&inOt[i]) * (float)*(&inla[i]+(j*size)) * (float)*(&in2a[i]+(j*size)));
h
*(&outA[j]) = sumA;
*(&outT[j]) = sumT;
}}
' Alison A Elliot (RAL) SWIFT-HEP Workshop #6 — Bristol 21-22 Nov 2023 20

