
traccc
Integrating the Alpaka framework

Ryan Cross
2023/11/22

traccc
Integrating the Alpaka framework

Ryan Cross
2023/11/22

Overview

This talk will cover:

1. A quick overview of traccc.

2. Cross-Platform Abstraction Libraries.

3. Recent Work

4. What comes next?

1 / 16Ryan Cross - 2023/11/22

Overview

This talk will cover:

1. A quick overview of traccc.

2. Cross-Platform Abstraction Libraries.

3. Recent Work

4. What comes next?

1 / 16Ryan Cross - 2023/11/22

ACTS is a generic, experiment

independent framework/software toolkit,

written in C++. Through it, you can get

algorithms for track reconstruction that

can be used in any experiment, agnostic of

any technical details (detector tech, design

and event processing framework).

It has been designed in a thread-safe

manner, with support for parallel code

execution and optimised data structures

for speeding up the many linear algebra

operations used throughout the code base.

Wide set of use cases, with

integrations/progress for Belle II, CEPC,

sPHENIX, PANDA, FASER, ATLAS ID

(current + ITk).

A Common Tracking Software

2 / 16Ryan Cross - 2023/11/22

ACTS is a generic, experiment

independent framework/software toolkit,

written in C++. Through it, you can get

algorithms for track reconstruction that

can be used in any experiment, agnostic of

any technical details (detector tech, design

and event processing framework).

It has been designed in a thread-safe

manner, with support for parallel code

execution and optimised data structures

for speeding up the many linear algebra

operations used throughout the code base.

Wide set of use cases, with

integrations/progress for Belle II, CEPC,

sPHENIX, PANDA, FASER, ATLAS ID

(current + ITk).

A Common Tracking Software

2 / 16Ryan Cross - 2023/11/22

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

3 / 16Ryan Cross - 2023/11/22

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

3 / 16Ryan Cross - 2023/11/22

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

traccc specifically, is aiming to establish a sensible event data model

and algorithms that are able to exploit parallelisation architecture,

whilst relying heavily on the other projects.

3 / 16Ryan Cross - 2023/11/22

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem
https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

traccc specifically, is aiming to establish a sensible event data model

and algorithms that are able to exploit parallelisation architecture,

whilst relying heavily on the other projects.

3 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - Why?

As part of traccc, the use of abstraction tools are interesting. There are many different ways to write code that

can run on a GPU.

Writing CUDA directly can be a mixed experience. You are locked into a specific vendor for acceleration, but

you don't have to deal with the additional layer of complexity an abstraction library brings.

Because of this, there exists many different abstraction paradigms, software that allows a single source code

base that at compile time can target many architectures. Common targets include CUDA, AMD / Intel

GPUs, and CPU parallelism via thread, OpenMP, TBB and more.

4 / 16Ryan Cross - 2023/11/22

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

Cross-Platform Abstraction - Why?

As part of traccc, the use of abstraction tools are interesting. There are many different ways to write code that

can run on a GPU.

Writing CUDA directly can be a mixed experience. You are locked into a specific vendor for acceleration, but

you don't have to deal with the additional layer of complexity an abstraction library brings.

Because of this, there exists many different abstraction paradigms, software that allows a single source code

base that at compile time can target many architectures. Common targets include CUDA, AMD / Intel

GPUs, and CPU parallelism via thread, OpenMP, TBB and more.

4 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

5 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

5 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

5 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

5 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

5 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

5 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

alpaka is a header-only C++ 17 abstraction library for accelerator development. It aims to provide

performance portability across a range of accelerators through the abstraction of the underlying levels of

parallelism. Support CUDA, OpenMP, std::thread, TBB, HIP and OpenAcc.

5 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

alpaka is a header-only C++ 17 abstraction library for accelerator development. It aims to provide

performance portability across a range of accelerators through the abstraction of the underlying levels of

parallelism. Support CUDA, OpenMP, std::thread, TBB, HIP and OpenAcc.

5 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

6 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

6 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

6 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

6 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

Define an operation for the device to perform:

job = [](auto accelerator, auto config, auto items) {

 auto item = items[getThreadIndex()];

 ...

};

6 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

Define an operation for the device to perform:

job = [](auto accelerator, auto config, auto items) {

 auto item = items[getThreadIndex()];

 ...

};

6 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

Define an operation for the device to perform:

job = [](auto accelerator, auto config, auto items) {

 auto item = items[getThreadIndex()];

 ...

};

Run the jobs in parallel:

queue.submit(job, configuration, items);

queue.wait();

6 / 16Ryan Cross - 2023/11/22

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

Define an operation for the device to perform:

job = [](auto accelerator, auto config, auto items) {

 auto item = items[getThreadIndex()];

 ...

};

Run the jobs in parallel:

queue.submit(job, configuration, items);

queue.wait();

6 / 16Ryan Cross - 2023/11/22

Why alpaka?

I've just outlined three projects that support the "write once, support many" paradigm, and both SYCL and

Kokkos are already implemented in traccc, with differing levels of functionality. So why a third?

alpaka was chosen as a possible candidate for a few reasons:

Simplicity: alpaka is a lightweight, header-only library, which makes integration into traccc very easy, as

well as it being written in the same modern C++17 as traccc/acts.

Familiarity: The alpaka abstraction model is very similar to the CUDA grid-blocks-thread model, making

writing code for alpaka simple, and familiar for those with CUDA experience, whilst also providing a CPU

and non-CUDA based implementation.

Community Support: alpaka has been used extensively at CMS, including in cms-sw and their HLT

achieving performance close to that of the native CUDA codebase, from a single source code that can be

utilised on many devices.

7 / 16Ryan Cross - 2023/11/22

https://github.com/cms-sw/cmssw/pull/40465
https://indico.cern.ch/event/1184802/contributions/5096742/subcontributions/400890/attachments/2539901/4372182/swifthep_cmsgpu.pdf

Why alpaka?

I've just outlined three projects that support the "write once, support many" paradigm, and both SYCL and

Kokkos are already implemented in traccc, with differing levels of functionality. So why a third?

alpaka was chosen as a possible candidate for a few reasons:

Simplicity: alpaka is a lightweight, header-only library, which makes integration into traccc very easy, as

well as it being written in the same modern C++17 as traccc/acts.

Familiarity: The alpaka abstraction model is very similar to the CUDA grid-blocks-thread model, making

writing code for alpaka simple, and familiar for those with CUDA experience, whilst also providing a CPU

and non-CUDA based implementation.

Community Support: alpaka has been used extensively at CMS, including in cms-sw and their HLT

achieving performance close to that of the native CUDA codebase, from a single source code that can be

utilised on many devices.

7 / 16Ryan Cross - 2023/11/22

Current Progress

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in January: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

8 / 16Ryan Cross - 2023/11/22

https://github.com/cms-sw/cmssw/pull/40465
https://indico.cern.ch/event/1184802/contributions/5096742/subcontributions/400890/attachments/2539901/4372182/swifthep_cmsgpu.pdf
https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431

Current Progress

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in January: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

8 / 16Ryan Cross - 2023/11/22

Current Progress

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in January: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

The spacepoint binning gave me a first look at development with Alpaka, as well as developing inside of

traccc/ACTS. My previous slides, given at a UK SWIFT-HEP / GRIDPP meeting, give a bit of a better

overview of that work, as well as some more basic comparisons of Alpaka vs CUDA.

8 / 16Ryan Cross - 2023/11/22

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://indico.cern.ch/event/1215829/contributions/5306562/

Current Progress

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in January: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

The spacepoint binning gave me a first look at development with Alpaka, as well as developing inside of

traccc/ACTS. My previous slides, given at a UK SWIFT-HEP / GRIDPP meeting, give a bit of a better

overview of that work, as well as some more basic comparisons of Alpaka vs CUDA.

8 / 16Ryan Cross - 2023/11/22

Current Progress

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in January: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

The spacepoint binning gave me a first look at development with Alpaka, as well as developing inside of

traccc/ACTS. My previous slides, given at a UK SWIFT-HEP / GRIDPP meeting, give a bit of a better

overview of that work, as well as some more basic comparisons of Alpaka vs CUDA.

8 / 16Ryan Cross - 2023/11/22

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://indico.cern.ch/event/1215829/contributions/5306562/
https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://indico.cern.ch/event/1215829/contributions/5306562/

Current Progress

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in January: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

The spacepoint binning gave me a first look at development with Alpaka, as well as developing inside of

traccc/ACTS. My previous slides, given at a UK SWIFT-HEP / GRIDPP meeting, give a bit of a better

overview of that work, as well as some more basic comparisons of Alpaka vs CUDA.

8 / 16Ryan Cross - 2023/11/22

Recent Work - Seeding Algorithms

Following the Spacepoint Binning work, the next logical step is to fill out the rest of the seeding process.

If we look at the diagram given in the traccc Git repo:

9 / 16Ryan Cross - 2023/11/22

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://indico.cern.ch/event/1215829/contributions/5306562/

Recent Work - Seeding Algorithms

Following the Spacepoint Binning work, the next logical step is to fill out the rest of the seeding process.

If we look at the diagram given in the traccc Git repo:

9 / 16Ryan Cross - 2023/11/22

Recent Work - Seeding Algorithms

Following the Spacepoint Binning work, the next logical step is to fill out the rest of the seeding process.

If we look at the diagram given in the traccc Git repo:

We can see that the previously added spacepoint binning, makes up a part of a larger track finding step, that

relies on the production of track seeds.

9 / 16Ryan Cross - 2023/11/22

Recent Work - Seeding Algorithms

Following the Spacepoint Binning work, the next logical step is to fill out the rest of the seeding process.

If we look at the diagram given in the traccc Git repo:

We can see that the previously added spacepoint binning, makes up a part of a larger track finding step, that

relies on the production of track seeds.

9 / 16Ryan Cross - 2023/11/22

Recent Work - Seeding Algorithms

Following the Spacepoint Binning work, the next logical step is to fill out the rest of the seeding process.

If we look at the diagram given in the traccc Git repo:

We can see that the previously added spacepoint binning, makes up a part of a larger track finding step, that

relies on the production of track seeds.

This process is implemented across a few different algorithms, with a seed finding algorithm consuming the

previously implemented binned spacepoints, before performing some track parameter estimation using the

result of the seeding.

9 / 16Ryan Cross - 2023/11/22

Recent Work - Seeding Algorithms

Following the Spacepoint Binning work, the next logical step is to fill out the rest of the seeding process.

If we look at the diagram given in the traccc Git repo:

We can see that the previously added spacepoint binning, makes up a part of a larger track finding step, that

relies on the production of track seeds.

This process is implemented across a few different algorithms, with a seed finding algorithm consuming the

previously implemented binned spacepoints, before performing some track parameter estimation using the

result of the seeding.

9 / 16Ryan Cross - 2023/11/22

Seeding Algorithms

The actual implementation of these new algorithms mostly proceeds the same as the implementation of the

spacepoint binning, which in turn mimics CUDA development. Device code is written in to kernels, with

those kernels being called with some form of launch parameters later in the code.

10 / 16Ryan Cross - 2023/11/22

Seeding Algorithms

The actual implementation of these new algorithms mostly proceeds the same as the implementation of the

spacepoint binning, which in turn mimics CUDA development. Device code is written in to kernels, with

those kernels being called with some form of launch parameters later in the code.

10 / 16Ryan Cross - 2023/11/22

Seeding Algorithms

The actual implementation of these new algorithms mostly proceeds the same as the implementation of the

spacepoint binning, which in turn mimics CUDA development. Device code is written in to kernels, with

those kernels being called with some form of launch parameters later in the code.

A couple of new (to me in Alpaka at least) development points did pop up with the latest bit of work:

Shared memory is supported in Alpaka, and is used as part of the seed finding. (I believe it uses system

memory for CPU-based accelerator targets, and then the expected __shared__ memory on GPUs).

It is a bit of a pain/verbose, at least as a new developer to Alpaka, but once added, works well.

Outside of that though, most of the complication in adding these algorithms is just ensuring that everything

is ported correctly to use the correct Alpaka handlers, and is copied to/from the devices as expected.

10 / 16Ryan Cross - 2023/11/22

Seeding Algorithms

The actual implementation of these new algorithms mostly proceeds the same as the implementation of the

spacepoint binning, which in turn mimics CUDA development. Device code is written in to kernels, with

those kernels being called with some form of launch parameters later in the code.

A couple of new (to me in Alpaka at least) development points did pop up with the latest bit of work:

Shared memory is supported in Alpaka, and is used as part of the seed finding. (I believe it uses system

memory for CPU-based accelerator targets, and then the expected __shared__ memory on GPUs).

It is a bit of a pain/verbose, at least as a new developer to Alpaka, but once added, works well.

Outside of that though, most of the complication in adding these algorithms is just ensuring that everything

is ported correctly to use the correct Alpaka handlers, and is copied to/from the devices as expected.

10 / 16Ryan Cross - 2023/11/22

Seeding Algorithms - Results

With it implemented however, we can now start to look at something a touch more representative, and also

turn on the CPU-comparisons, to compare the produced track parameters from the Alpaka implementation

to the reference CPU implementation.

11 / 16Ryan Cross - 2023/11/22

Seeding Algorithms - Results

With it implemented however, we can now start to look at something a touch more representative, and also

turn on the CPU-comparisons, to compare the produced track parameters from the Alpaka implementation

to the reference CPU implementation.

11 / 16Ryan Cross - 2023/11/22

Seeding Algorithms - Results

With it implemented however, we can now start to look at something a touch more representative, and also

turn on the CPU-comparisons, to compare the produced track parameters from the Alpaka implementation

to the reference CPU implementation.

Time to Process One Event (µs)

Sample CPU CUDA alpaka

single_muon 133.53 3136.5 3650.28

ttbar_mu20 92296.1 8311.2 9174.8

ttbar_mu40 193081.8 9989.3 11305.9

ttbar_mu60 348806.3 14360.4 15385

ttbar_mu80 567138.6 26362.5 24915.4

ttbar_mu100 825637.3 34054.8 31915.5

ttbar_mu140 1367165 39802.2 38342.8

ttbar_mu200 2659153.9 50907.1 50540.8

ttbar_mu300 5986834.4 75209.7 77584.5

Performed on a i9-10980XE and RTX A5000, average over 10 runs.

11 / 16Ryan Cross - 2023/11/22

Seeding Algorithms - Results

With it implemented however, we can now start to look at something a touch more representative, and also

turn on the CPU-comparisons, to compare the produced track parameters from the Alpaka implementation

to the reference CPU implementation.

Time to Process One Event (µs)

Sample CPU CUDA alpaka

single_muon 133.53 3136.5 3650.28

ttbar_mu20 92296.1 8311.2 9174.8

ttbar_mu40 193081.8 9989.3 11305.9

ttbar_mu60 348806.3 14360.4 15385

ttbar_mu80 567138.6 26362.5 24915.4

ttbar_mu100 825637.3 34054.8 31915.5

ttbar_mu140 1367165 39802.2 38342.8

ttbar_mu200 2659153.9 50907.1 50540.8

ttbar_mu300 5986834.4 75209.7 77584.5

Performed on a i9-10980XE and RTX A5000, average over 10 runs.

11 / 16Ryan Cross - 2023/11/22

Seeding Algorithms - Results

With it implemented however, we can now start to look at something a touch more representative, and also

turn on the CPU-comparisons, to compare the produced track parameters from the Alpaka implementation

to the reference CPU implementation.

Time to Process One Event (µs)

Sample CPU CUDA alpaka

single_muon 133.53 3136.5 3650.28

ttbar_mu20 92296.1 8311.2 9174.8

ttbar_mu40 193081.8 9989.3 11305.9

ttbar_mu60 348806.3 14360.4 15385

ttbar_mu80 567138.6 26362.5 24915.4

ttbar_mu100 825637.3 34054.8 31915.5

ttbar_mu140 1367165 39802.2 38342.8

ttbar_mu200 2659153.9 50907.1 50540.8

ttbar_mu300 5986834.4 75209.7 77584.5

Performed on a i9-10980XE and RTX A5000, average over 10 runs.

11 / 16Ryan Cross - 2023/11/22

Seeding Algorithms - Results

With it implemented however, we can now start to look at something a touch more representative, and also

turn on the CPU-comparisons, to compare the produced track parameters from the Alpaka implementation

to the reference CPU implementation.

Time to Process One Event (µs)

Sample CPU CUDA alpaka

single_muon 133.53 3136.5 3650.28

ttbar_mu20 92296.1 8311.2 9174.8

ttbar_mu40 193081.8 9989.3 11305.9

ttbar_mu60 348806.3 14360.4 15385

ttbar_mu80 567138.6 26362.5 24915.4

ttbar_mu100 825637.3 34054.8 31915.5

ttbar_mu140 1367165 39802.2 38342.8

ttbar_mu200 2659153.9 50907.1 50540.8

ttbar_mu300 5986834.4 75209.7 77584.5

Performed on a i9-10980XE and RTX A5000, average over 10 runs.

11 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

There is some interesting features there!

The clusterization seems to be consistently actually faster inside of Alpaka!

It is entirely possible that I'm not doing a 100% fair comparison...the CUDA code uses a decent amount

of hard-coded, but sane, parameters, so if I have utilised something more dynamic such that the powerful

GPU here is utilised more, that makes sense.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

There is some interesting features there!

The clusterization seems to be consistently actually faster inside of Alpaka!

It is entirely possible that I'm not doing a 100% fair comparison...the CUDA code uses a decent amount

of hard-coded, but sane, parameters, so if I have utilised something more dynamic such that the powerful

GPU here is utilised more, that makes sense.

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

There is some interesting features there!

The clusterization seems to be consistently actually faster inside of Alpaka!

It is entirely possible that I'm not doing a 100% fair comparison...the CUDA code uses a decent amount

of hard-coded, but sane, parameters, so if I have utilised something more dynamic such that the powerful

GPU here is utilised more, that makes sense.

In the remaining plots, there is a fairly consistent offset between the Alpaka and CUDA implementations.

There is still 1 or 2 missing bits from my Alpaka implementation, with async being the most notable

difference. Potential that some of the work done at CMS could make its way back into Alpaka proper, to

help here (i.e. caching allocator).

12 / 16Ryan Cross - 2023/11/22

Result Breakdown

One interesting thing we can look at, is that these numbers are the average total time to process one event

through the seq_example, which runs the clusterization + spacepoint creation, then seeding, then track

parameter estimation. Because of this, we actually get three numbers out, which make up the total run time,

so we can go into a little bit more detail to see how each of the sub-components take to run.

It should be noted that these numbers are interesting from a development point-of-view, but these smaller

examples aren't completely representative of the "real" performance of the algorithms, as they are running in a

less realistic way.

There is some interesting features there!

The clusterization seems to be consistently actually faster inside of Alpaka!

It is entirely possible that I'm not doing a 100% fair comparison...the CUDA code uses a decent amount

of hard-coded, but sane, parameters, so if I have utilised something more dynamic such that the powerful

GPU here is utilised more, that makes sense.

In the remaining plots, there is a fairly consistent offset between the Alpaka and CUDA implementations.

There is still 1 or 2 missing bits from my Alpaka implementation, with async being the most notable

difference. Potential that some of the work done at CMS could make its way back into Alpaka proper, to

help here (i.e. caching allocator).

12 / 16Ryan Cross - 2023/11/22

More Recent Work

More recently, I've been filling out even more of the algorithms into Alpaka, starting from the existing

CUDA implementations. This includes the porting of some throughput examples, rather than the per-event

examples shown so far.

This represents a more fair comparison, with the appropriate amount of setup and cold-runs, as well as just

being more realistic in the setup/tear-down process for if this code was being used to process many events,

rather than the previous examples which are much more designed around looking at a single event from a

development point-of-view.

13 / 16Ryan Cross - 2023/11/22

More Recent Work

More recently, I've been filling out even more of the algorithms into Alpaka, starting from the existing

CUDA implementations. This includes the porting of some throughput examples, rather than the per-event

examples shown so far.

This represents a more fair comparison, with the appropriate amount of setup and cold-runs, as well as just

being more realistic in the setup/tear-down process for if this code was being used to process many events,

rather than the previous examples which are much more designed around looking at a single event from a

development point-of-view.

13 / 16Ryan Cross - 2023/11/22

More Recent Work

More recently, I've been filling out even more of the algorithms into Alpaka, starting from the existing

CUDA implementations. This includes the porting of some throughput examples, rather than the per-event

examples shown so far.

This represents a more fair comparison, with the appropriate amount of setup and cold-runs, as well as just

being more realistic in the setup/tear-down process for if this code was being used to process many events,

rather than the previous examples which are much more designed around looking at a single event from a

development point-of-view.

13 / 16Ryan Cross - 2023/11/22

More Recent Work

More recently, I've been filling out even more of the algorithms into Alpaka, starting from the existing

CUDA implementations. This includes the porting of some throughput examples, rather than the per-event

examples shown so far.

This represents a more fair comparison, with the appropriate amount of setup and cold-runs, as well as just

being more realistic in the setup/tear-down process for if this code was being used to process many events,

rather than the previous examples which are much more designed around looking at a single event from a

development point-of-view.

13 / 16Ryan Cross - 2023/11/22

More Recent Work

More recently, I've been filling out even more of the algorithms into Alpaka, starting from the existing

CUDA implementations. This includes the porting of some throughput examples, rather than the per-event

examples shown so far.

This represents a more fair comparison, with the appropriate amount of setup and cold-runs, as well as just

being more realistic in the setup/tear-down process for if this code was being used to process many events,

rather than the previous examples which are much more designed around looking at a single event from a

development point-of-view.

13 / 16Ryan Cross - 2023/11/22

More Recent Work

More recently, I've been filling out even more of the algorithms into Alpaka, starting from the existing

CUDA implementations. This includes the porting of some throughput examples, rather than the per-event

examples shown so far.

This represents a more fair comparison, with the appropriate amount of setup and cold-runs, as well as just

being more realistic in the setup/tear-down process for if this code was being used to process many events,

rather than the previous examples which are much more designed around looking at a single event from a

development point-of-view.

13 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

Documentation is mostly good. There is a few gaps, which may assume a touch too much C++ knowledge,

but its broadly good. The few parts I struggled with were either out-of-date docs, or they missed some

additional context.

As is common in lots of projects, the examples are mostly quite basic, so there is a bit of a jump between

say the Alpaka examples, and use in real code.

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

Documentation is mostly good. There is a few gaps, which may assume a touch too much C++ knowledge,

but its broadly good. The few parts I struggled with were either out-of-date docs, or they missed some

additional context.

As is common in lots of projects, the examples are mostly quite basic, so there is a bit of a jump between

say the Alpaka examples, and use in real code.

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

Documentation is mostly good. There is a few gaps, which may assume a touch too much C++ knowledge,

but its broadly good. The few parts I struggled with were either out-of-date docs, or they missed some

additional context.

As is common in lots of projects, the examples are mostly quite basic, so there is a bit of a jump between

say the Alpaka examples, and use in real code.

Perhaps an obvious pain-point...Alpaka uses lots of templates, so you can easily end up with 1000s of lines

of errors for a tiny typo.

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

Documentation is mostly good. There is a few gaps, which may assume a touch too much C++ knowledge,

but its broadly good. The few parts I struggled with were either out-of-date docs, or they missed some

additional context.

As is common in lots of projects, the examples are mostly quite basic, so there is a bit of a jump between

say the Alpaka examples, and use in real code.

Perhaps an obvious pain-point...Alpaka uses lots of templates, so you can easily end up with 1000s of lines

of errors for a tiny typo.

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

Documentation is mostly good. There is a few gaps, which may assume a touch too much C++ knowledge,

but its broadly good. The few parts I struggled with were either out-of-date docs, or they missed some

additional context.

As is common in lots of projects, the examples are mostly quite basic, so there is a bit of a jump between

say the Alpaka examples, and use in real code.

Perhaps an obvious pain-point...Alpaka uses lots of templates, so you can easily end up with 1000s of lines

of errors for a tiny typo.

Debugging with Nsight and similar works fine, just as well as normal if given the correct compile time flags,

though can have slightly awkward to read auto-generated names.

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

Documentation is mostly good. There is a few gaps, which may assume a touch too much C++ knowledge,

but its broadly good. The few parts I struggled with were either out-of-date docs, or they missed some

additional context.

As is common in lots of projects, the examples are mostly quite basic, so there is a bit of a jump between

say the Alpaka examples, and use in real code.

Perhaps an obvious pain-point...Alpaka uses lots of templates, so you can easily end up with 1000s of lines

of errors for a tiny typo.

Debugging with Nsight and similar works fine, just as well as normal if given the correct compile time flags,

though can have slightly awkward to read auto-generated names.

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

Documentation is mostly good. There is a few gaps, which may assume a touch too much C++ knowledge,

but its broadly good. The few parts I struggled with were either out-of-date docs, or they missed some

additional context.

As is common in lots of projects, the examples are mostly quite basic, so there is a bit of a jump between

say the Alpaka examples, and use in real code.

Perhaps an obvious pain-point...Alpaka uses lots of templates, so you can easily end up with 1000s of lines

of errors for a tiny typo.

Debugging with Nsight and similar works fine, just as well as normal if given the correct compile time flags,

though can have slightly awkward to read auto-generated names.

Perhaps obvious, perhaps not, but just because your code base now supports multiple backends, doesn't

mean it can support them effectively. For example, compiling to utilise a single CPU thread, compared to

the single thread CPU implementation already in traccc....results in much worse performance.

14 / 16Ryan Cross - 2023/11/22

Developer Experience

Now that I'm slightly more familiar with alpaka, I thought perhaps it would be useful to give my opinions on

how it is to develop with it, at least from the context of porting existing CUDA code to benefit from Alpaka:

Mostly, very positive! The parallelisation paradigm being the same as CUDA does make the process much

easier, and should also be fairly intuitive to people who know CUDA (at least when considering GPU-

based backends...).

Documentation is mostly good. There is a few gaps, which may assume a touch too much C++ knowledge,

but its broadly good. The few parts I struggled with were either out-of-date docs, or they missed some

additional context.

As is common in lots of projects, the examples are mostly quite basic, so there is a bit of a jump between

say the Alpaka examples, and use in real code.

Perhaps an obvious pain-point...Alpaka uses lots of templates, so you can easily end up with 1000s of lines

of errors for a tiny typo.

Debugging with Nsight and similar works fine, just as well as normal if given the correct compile time flags,

though can have slightly awkward to read auto-generated names.

Perhaps obvious, perhaps not, but just because your code base now supports multiple backends, doesn't

mean it can support them effectively. For example, compiling to utilise a single CPU thread, compared to

the single thread CPU implementation already in traccc....results in much worse performance.

14 / 16Ryan Cross - 2023/11/22

Future Work

The PR for this set of work is open (#451), and I've gotten a bit further in my development branch, such that

I can run (almost) the full set of algorithms now, excluding some that were added very recently.

Along side that, there is a few remaining bugs and things to look at:

I haven't tested across a wide-range of devices yet. I've done a quick CPU test, but not thoroughly checked

yet. I also would like to get access to somewhere I can test the HIP side of things!

Similarly, since the CUDA implementation is 1-element-per-thread (for a lot of kernels at least), I'd need to

expand the parallelisation a touch to work on threaded CPUs, to process more than 1 thing at once.

There is still a performance delta between the CUDA and alpaka implementation, which is to be expected,

but it would be interesting to look into it a bit more.

15 / 16Ryan Cross - 2023/11/22

https://github.com/acts-project/traccc/pull/451

Future Work

The PR for this set of work is open (#451), and I've gotten a bit further in my development branch, such that

I can run (almost) the full set of algorithms now, excluding some that were added very recently.

Along side that, there is a few remaining bugs and things to look at:

I haven't tested across a wide-range of devices yet. I've done a quick CPU test, but not thoroughly checked

yet. I also would like to get access to somewhere I can test the HIP side of things!

Similarly, since the CUDA implementation is 1-element-per-thread (for a lot of kernels at least), I'd need to

expand the parallelisation a touch to work on threaded CPUs, to process more than 1 thing at once.

There is still a performance delta between the CUDA and alpaka implementation, which is to be expected,

but it would be interesting to look into it a bit more.

15 / 16Ryan Cross - 2023/11/22

Conclusion

In Conclusion:

traccc is a R&D effort as part of the ACTS project, working on exploiting GPUs and other accelerators to

speed up tracking across a range of experiments.

As part of that, many different acceleration abstraction libraries have been implemented, with alpaka being

the newest.

alpaka has good support already in HEP, and its parallelisation model make it a strong candidate for being

the general purpose abstraction library.

To that end, this talk outlines the next steps, porting more algorithms to alpaka.

Decent performance has been achieved, even without extensive tuning or testing of the different

parallelisation parameters or threading model.

Finally, there is a clear path forward to how to more extensively test alpaka, to understand how it performs

and how easy it is to implement the sort of operations we need in it.

16 / 16Ryan Cross - 2023/11/22

https://github.com/acts-project/traccc/pull/451

Conclusion

In Conclusion:

traccc is a R&D effort as part of the ACTS project, working on exploiting GPUs and other accelerators to

speed up tracking across a range of experiments.

As part of that, many different acceleration abstraction libraries have been implemented, with alpaka being

the newest.

alpaka has good support already in HEP, and its parallelisation model make it a strong candidate for being

the general purpose abstraction library.

To that end, this talk outlines the next steps, porting more algorithms to alpaka.

Decent performance has been achieved, even without extensive tuning or testing of the different

parallelisation parameters or threading model.

Finally, there is a clear path forward to how to more extensively test alpaka, to understand how it performs

and how easy it is to implement the sort of operations we need in it.

16 / 16Ryan Cross - 2023/11/22

traccc
Integrating the Alpaka framework

Ryan Cross
2023/11/22

traccc
Integrating the Alpaka framework

Ryan Cross
2023/11/22

Backup Slides

16 / 16Ryan Cross - 2023/11/22

Backup Slides

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

CUDA vs alpaka only

16 / 16Ryan Cross - 2023/11/22

