
Pattern Matching:
Migrating CUDA
to oneAPI on Intel
FPGA

Abdeslem Djaoui
Dmitry Emeliyanov & John Baines

Meeting 22/11/2023 Abdeslem Djaoui0

1 What is oneAPI

2 First target: A functionally correct version running on the FPGA

3 Optimizations landscape

4 Further Parallelization steps and techniques

5 Results so far: How does it compare to GPU

Agenda

Im
ag

e
©

 S
TF

C
 A

la
n

Fo
rd

22/11/2023 Abdeslem Djaoui1

oneAPI in a nutshell
§ Framework for programming accelerator devices based on SYCL

(C++), plus Data Parallel (DPC++) additions
§ Higher abstraction than HLS and OpenCL (“easier to program!”)
§ Multiple device selectors target different devices

§ cpu_selector, gpu_selector, accelerator_selector
§ fpga_emulator_selector, fpga_selector

§Portability varies depending on device
§ SYCL queues for offloading work from host to device

§ Similar to CUDA Streams
§ Used for both kernels and memory copy operations
§ After submission, host continues to execute, while device, eventually

(asynchronously) does the work, unless wait() is specified.

22/11/2023 Abdeslem Djaoui2

oneAPI: Data Management
§ 2 Options for data creation/movement between host and device
§Unified Shared Memory USM

§ Pointer based approach (like C++)
§ Both explicit and implicit data movement depending on allocation type

(device, host or shared)
§Buffers and accessors (SYCL)

§ Buffers can be created and initialized with data residing on the host
§ Runtime performs implicit data movement from host to device
§ Buffers (not initial data) accessed from device and host using accessor

objects
§ Different concept from USM
§ Can be mixed with USM if needed

22/11/2023 Abdeslem Djaoui3

oneAPI Kernels
§ 2 types of kernels
§ND-range kernels (similar to CUDA kernels)

§ Suitable for porting CUDA to oneAPI on GPU
§ Tools available for easy porting of CUDA code to oneAPI ND-range on

GPUs
§ Not easily optimized on FPGA

§Single Task kernels (FPGA specific)
§ Looks sequential in nature (like legacy code)
§ oneAPI compiler automatically tries to pipeline iterations in loops
§ Many options for optimization available
§ No tools available for easy porting of CUDA to single task kernels

22/11/2023 Abdeslem Djaoui4

1 What is oneAPI

2 First target: A functionally correct version running on the FPGA

Agenda

Im
ag

e
©

 S
TF

C
 A

la
n

Fo
rd

22/11/2023 Abdeslem Djaoui5

First Kernel Version: inspired by CUDA
§ Host side code

§ USM for memory management
§ Explicit copy of data from host to device
§ Explicit copy of results from device to host

§ A Kernel loop for each event, on the host {
§ On the device:

§ Single task kernel
§ Read event data from global to local memory (on chip)
§ Loop for pattern blocks {

§ Nested loop for patterns for each block {
§ Nested loop for pattern matching accumulator count { }}}

§ Typical development flow:
§ Emulation (seconds) for functional correctness
§ report generation (minutes) for details about issues hindering the creation of an effective

pipeline
§ generate hardware bitstream for programming FPGA (hours) and run it
§ Profiling it (also requires a separate hardware generation bitstream)

22/11/2023 Abdeslem Djaoui6

First version and results
§ Some necessary restructuring

§ Error: Atomics not supported in systems with more that one global memory
(DDR4 and USM)

§ Move some load/stores to local memory
§ Only update global memory after pipelined loop exists

§ One load operation per clock cycle, no need for Atomics
§ Result: ~1000x slower than GPU

§ Compiler tries and fails to build an efficient pipeline
§ Outside blocks loop on the device executed serially
§ Memory dependencies in nested loops

§ Low Fmax: 242MHz (Maximum 480MHz)
§ But functionally correct
§ Verdict: Code is fairly portable, not the performance.

22/11/2023 Abdeslem Djaoui7

1 What is oneAPI

2 First target: Functionally correct version running on the FPGA

3 Optimizations landscape

Agenda

Im
ag

e
©

 S
TF

C
 A

la
n

Fo
rd

22/11/2023 Abdeslem Djaoui8

Available FPGA execution types
• Sequential: one task at a time
• Parallel: Multiple tasks or operations

executed simultaneously
• GPU/CPU have pre-configured hardware

(cores) for this
• FPGA compiler automatically executes all

independent operations on the FPGA spacial
area in parallel (limited without modifications)

• Pipelined (FPGA specific):
• Operations in a task split into multiple stages
• Feed forward of data items
• Multiple items running in parallel in different

pipeline stages (~ Latency/Initiation Interval)
• Mix the types on the FPGA as needed

• Implement parallelism similar to GPU/CPU
(generally not too scalable)

• Or go beyond what exists on GPU/CPU and
devise own custom hardware that suits your
application

22/11/2023 Abdeslem Djaoui9

D
a
t
a

I
t
e
m
s

d0

d1

d0

d1

d0

d1

sequential

parallel

Pipelined II=3

d2

First “efficient” pipeline
§ Use buffers for both event and pattern data

§ Uploaded to device automatically before execution starts
§ Use USM for results

§ Downloaded to host automatically by kernel
§ A single loop over all patterns (merge blocks and patterns loops)
§ Further modifications to lower the II

§ Unroll nested pattern matching count loop (removes some data dependencies)
§ Reduce global memory loads by coalescing loads

§ II=1 achieved (best for throughput)
§ Resulting Kernel code already quite different from initial CUDA code
§ results:

§ Performance: 40 x slower than GPU
§ Will need 40 x parallelism or more for similar performance
§ Most used resource: RAM blocks: 8% (out of 68% available)

§ Some benefit of major restructuring the code:
§ An obscure bug was discovered in the CUDA version

22/11/2023 Abdeslem Djaoui10

1 What is oneAPI

2 First target: A functionally correct version running on the FPGA

3 Optimizations landscape

4 Further Parallelization steps and techniques

Agenda

Im
ag

e
©

 S
TF

C
 A

la
n

Fo
rd

22/11/2023 Abdeslem Djaoui11

4.1 Parallelism: 1D Vectorization execution
• Type of parallel execution where operations

performed on multiple data-items
simultaneously for each event e

• For 2 items d0 and d1:
• 2 x Parallel operations on 2 data-items at

different pipeline stages in each clock cycle
• Implemented in hardware as a deeper

pipeline with 2 parts: (d0, e) – (d1-e)
• Similar to SIMD on CPU or warps on GPU

(best analogy)
• Difference is:

• Hardware for CPU/GPU already exists
• For FPGA, need to help compiler build

required hardware by structuring code
accordingly

• Cost: Resources needed for implementing
the deeper pipeline

22/11/2023 Abdeslem Djaoui12

Clock cycles
P
i
p
e
l
i
n
e
d

D
a
t
a

It
e
m
s

d0

d1

Pipelined II=1

d2

Pipelined II=1
2x vectorised

d0
d1

d2
d3

d4
d5

Pattern data 1D vectorization steps and results
• Coalesce loads from global

memory for a vector of P of (2,
4, 8) patterns

• Trip count for pipelined pattern
loop is reduces by P

• Improving throughput by P
compared to 1 pattern

• On-Chip memory usage
increases ~ linearly with P

• Scalability only limited by
• Potential pipeline stalls, waiting

for Global memory loads to
finish

• Vector of 4 Patterns selected
for next steps

22/11/2023 Abdeslem Djaoui13

Linear scaling

(P patterns, 1 event) pipeline, 1 Kernel

Overall Best 8

10

12

14

16

R
AM

 blocks %

Th
ro

ug
hp

ut
 s

ca
lin

g

1

2

3

4

5

6

7

8

Number of concurent patterns P
0 1 2 3 4 5 6 7 8 9

d0
d1

d2
d3

d4
d5

4.2 2D vectorization (patterns and events)
• Interleave loop event iterations from host

into patterns loop pipeline on FPGA
• Higher-level granularity data (events)

processed in parallel with lower-level data
(patterns)

• For 2 events (e0,e1) and 2 patterns (do,d1):
• Deeper pipeline constructed with 4 parts:

(d0, e0)-(d0,e1)-(d1,e0)-(d1,e1)
• All operation performed simultaneously in

each clock cycle in different parts of pipeline
• This results in a hardware custom made 2D

vectorization unit
• No equivalent exists on CPU or GPU

• Most problems targeting GPUs can be
thought of as operating on 2 levels of data
granularity one on host and one on device

• Could benefit from 2D vectorization on
FPGAs to increase throughput

22/11/2023 Abdeslem Djaoui14

Clock cycles
P
i
p
e
l
e
n
i
e
d

p
a
t
t
e
r
n
s

2D (2x2) vectorized

e0 e1

Interleaved Events
e0 e1 e0 e1

2D vectorization and results for N events
• Advantages of 2D vectorization:

• Overhead of loading data from
global memory shared by N events

• Compacting pattern data results in
only 1 load operation

• This results in reduction of required
accesses to Global memory

• Overhead of Kernel launch also
shared by N events

• N events x P patterns processed
simultaneously in each cycle
(4p x 6e=24)

• Good scaling compared to (4
patterns and 1 event)

• Limited by:
• increase in amount of data read

before pipeline execution
• Available resources (RAM blocks)

on the FPGA

22/11/2023 Abdeslem Djaoui15

Linear scaling

Overall Best

(4 patterns, N events) pipeline, 1 Kernel

0

10

20

30

40 R
AM

 blocks %

Th
ro

ug
hp

ut
 s

ca
lin

g

0

1

2

3

4

5

6

7

8

Number of concurent events N
0 1 2 3 4 5 6 7 8 9

4.3 Multiple Kernels and results

22/11/2023 Abdeslem Djaoui16

• Submit multiple task Kernels
in parallel (already 2D
vectorized)

• “Similar” to Streaming
Multiprocessors on GPU

• Good scaling, but limited by:
• Total embedded memory usage

reaching 100%
• 3rd kernel has only 2 events
• SYCL Queue overhead of

launching kernels increases
with the number of kernels

• In total 56-way parallelism
achieved compared to initial
pipeline (40 required):
(2k x (4p x 6e)+1k x 4p x 2e)

R
AM

 blocks %

Linear scaling

3rd Kernel
(2 events)
 2.3

30

40

50

60

70
 (4 patterns, 6 events) pipeline, K Kernels

21

Th
ro

ug
hp

ut
 s

ca
lin

g

1.0

1.5

2.0

2.5

Number of parallel Kernels K

1 What is oneAPI

2 First target: A functionally correct version running on the FPGA

3 Optimizations landscape

4 Further Parallelization steps and techniques

5 Results so far: How does it compare to GPU

Agenda

Im
ag

e
©

 S
TF

C
 A

la
n

Fo
rd

22/11/2023 Abdeslem Djaoui17

FPGA versus GPU
§ Similar throughput
§ Pattern Matching is a Memory

Bandwidth intensive application
§ GPU has a huge advantage in this

regard
§ To summarise:

§ FPGA processes 14 events in 3 parallel
kernels

§ GPU: 1 event, 1 kernel at a time
§ FPGA (with DDR4) results within 12% of

FPGA (with HMB2)
§ 2D vectorization is critical in increasing

throughput
§ Porting kernel CODE from GPU to FPGA

requires extensive changes
§ Final Verdict: Performance is portable,

not the code.

22/11/2023 Abdeslem Djaoui 18

FPGA GPU

Device Intel PAC D5005 Stratix
10 GX

NVIDIA TITAN V

Performance
(for Pileup events)

68 𝞵s/event 59 𝝻s/event
Includes event data transfer

Frequency 305 MHz 1.2GHz (1.5GHz boost)

Global memory DDR4 2400 HBM2

Memory bandwidth
(theoretical)

38.4 GB/s 653 GB/s

Very different
architecture: Difficult to
compare like with like

56-way mixed
parallelism:
3 kernels (2D vectorized)
executed in parallel

80 streaming
multiprocessors:
64 cores each,
5120 CUDA cores,
Warps of 32 threads
executed in “parallel”

