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oneAPI in a nutshell
§ Framework for programming accelerator devices based on SYCL 

(C++), plus Data Parallel (DPC++) additions
§ Higher abstraction than HLS and OpenCL (“easier to program!”)
§ Multiple device selectors target different devices

§ cpu_selector, gpu_selector, accelerator_selector
§ fpga_emulator_selector, fpga_selector

§Portability varies depending on device
§ SYCL queues for offloading work from host to device

§ Similar to CUDA Streams
§ Used for both kernels and memory copy operations
§ After submission, host continues to execute, while device, eventually 

(asynchronously) does the work, unless wait() is specified.
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oneAPI:  Data Management
§ 2 Options for data creation/movement between host and device
§Unified Shared Memory USM 

§ Pointer based approach (like C++)
§ Both explicit and implicit data movement depending on allocation type 

(device, host or shared)
§Buffers and accessors (SYCL)

§ Buffers can be created and initialized with data residing on the host 
§ Runtime performs implicit data movement from host to device
§ Buffers (not initial data) accessed from device and host using accessor 

objects
§ Different concept from USM
§ Can be mixed with USM if needed
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oneAPI Kernels
§ 2 types of kernels
§ND-range kernels (similar to CUDA kernels)

§ Suitable for porting CUDA to oneAPI on GPU 
§ Tools available for easy porting of CUDA code to oneAPI ND-range on 

GPUs
§ Not easily optimized on FPGA

§Single Task kernels (FPGA specific)
§ Looks sequential in nature (like legacy code)
§ oneAPI compiler automatically  tries to pipeline iterations in  loops
§ Many options for optimization available
§ No tools available for easy porting of CUDA to single task kernels
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First Kernel Version: inspired by CUDA
§ Host side code 

§ USM for memory management
§ Explicit copy of data from host to device
§ Explicit copy of results from device to host 

§ A Kernel loop for each event, on the host {  
§ On the device:

§ Single task kernel
§ Read event data from global to local memory (on chip)
§ Loop for pattern blocks {

§ Nested loop for patterns for each block {
§ Nested loop for pattern matching accumulator count {        }}}

§ Typical development flow:
§ Emulation (seconds) for functional correctness 
§ report generation (minutes) for details about issues hindering the creation of an effective 

pipeline
§ generate hardware bitstream for programming FPGA (hours) and run it
§ Profiling it (also requires a separate hardware generation bitstream)
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First version and results
§ Some necessary restructuring

§ Error: Atomics not supported in systems with more that one global memory 
(DDR4 and USM)

§ Move some load/stores to local memory
§ Only update global memory after pipelined loop exists 

§ One load operation per clock cycle, no need for Atomics
§ Result:  ~1000x slower than GPU

§ Compiler tries and  fails to build an efficient pipeline
§ Outside blocks loop on the device executed serially
§ Memory  dependencies in nested loops

§ Low Fmax: 242MHz (Maximum 480MHz) 
§ But functionally correct
§ Verdict: Code is fairly portable, not the performance.
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Available FPGA execution types
• Sequential: one task at a time
• Parallel: Multiple tasks or operations

executed simultaneously
• GPU/CPU have pre-configured hardware 

(cores) for this 
• FPGA compiler automatically executes all 

independent operations on the FPGA spacial
area in parallel (limited without modifications)

• Pipelined (FPGA specific):
• Operations in a task split into multiple stages
• Feed forward of data items
• Multiple items running in parallel in different 

pipeline stages (~ Latency/Initiation Interval)
• Mix the types on the FPGA as needed

• Implement parallelism similar to GPU/CPU 
(generally not too scalable)

• Or go beyond what exists on GPU/CPU and 
devise own custom hardware that suits your 
application
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First “efficient”  pipeline
§ Use buffers for both event and pattern data

§ Uploaded to device automatically before execution starts
§ Use USM for results

§ Downloaded to host  automatically by kernel
§ A single loop over all patterns (merge blocks and patterns loops)
§ Further modifications to lower the II

§ Unroll nested pattern matching count loop (removes some data dependencies)
§ Reduce global memory loads by coalescing loads

§ II=1 achieved (best for throughput)
§ Resulting Kernel code already quite different from initial CUDA code
§ results:

§ Performance:  40 x slower than GPU
§ Will need 40 x parallelism or more for similar performance
§ Most used resource: RAM blocks: 8% (out of 68% available)

§ Some benefit of major restructuring the code:
§ An obscure bug was discovered in the CUDA version
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4.1 Parallelism: 1D Vectorization execution 
• Type of parallel execution where operations

performed on multiple data-items 
simultaneously for each event e

• For 2 items d0 and d1:
• 2 x Parallel operations on 2 data-items at 

different pipeline stages in each clock cycle
• Implemented in hardware as  a deeper 

pipeline with 2 parts:  (d0, e) – (d1-e)
• Similar to SIMD on CPU or warps on GPU 

(best analogy)
• Difference is: 

• Hardware for CPU/GPU already exists
• For FPGA, need to help compiler build 

required hardware by structuring code 
accordingly

• Cost: Resources needed for implementing 
the deeper pipeline
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Pattern data 1D vectorization steps and  results
• Coalesce loads from global 

memory for a vector of P of (2, 
4, 8) patterns

• Trip count for pipelined pattern 
loop is reduces by P

• Improving throughput by P 
compared to 1 pattern

• On-Chip memory usage 
increases ~ linearly with P

• Scalability only  limited by
• Potential pipeline stalls, waiting 

for Global memory loads to 
finish

• Vector of 4 Patterns selected 
for next steps
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4.2 2D vectorization (patterns and events)
• Interleave  loop event iterations from host 

into patterns loop pipeline on FPGA
• Higher-level granularity data (events) 

processed in parallel with lower-level data 
(patterns)

• For 2 events (e0,e1) and 2 patterns (do,d1):
• Deeper pipeline constructed with 4 parts:  

(d0, e0)-(d0,e1)-(d1,e0)-(d1,e1)
• All operation performed simultaneously in 

each clock cycle in different parts of pipeline
• This results in a hardware custom made 2D 

vectorization unit
• No equivalent exists on CPU or GPU

• Most problems targeting GPUs can be 
thought of as operating on 2 levels of data 
granularity one on host and one on device

• Could benefit from 2D vectorization on 
FPGAs to increase throughput
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2D vectorization and results for N events
• Advantages of 2D vectorization:

• Overhead of loading data from 
global memory shared  by N events

• Compacting pattern data results in 
only 1 load operation 

• This results in reduction  of required 
accesses to Global memory

• Overhead of Kernel launch also 
shared by N events

• N events x P patterns processed 
simultaneously in each cycle
(4p x 6e=24)  

• Good scaling compared to (4 
patterns and 1 event)

• Limited by:
• increase in amount of data read 

before pipeline execution
• Available resources (RAM blocks) 

on the FPGA 
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4.3 Multiple Kernels and results
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• Submit multiple task Kernels 
in parallel (already 2D 
vectorized)

• “Similar” to Streaming 
Multiprocessors on GPU

• Good scaling, but limited by: 
• Total embedded memory usage 

reaching  100%
• 3rd kernel has only 2 events
• SYCL Queue overhead of 

launching kernels increases 
with the number of kernels

• In total  56-way parallelism 
achieved compared to initial 
pipeline (40 required):                 
(2k x (4p x 6e)+1k x 4p x 2e)
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FPGA versus GPU
§ Similar throughput
§ Pattern Matching is a Memory 

Bandwidth intensive application
§ GPU has a huge advantage in this 

regard
§ To summarise:

§ FPGA processes 14 events in 3 parallel 
kernels

§ GPU: 1 event, 1 kernel at a time
§ FPGA (with DDR4) results within 12% of 

FPGA (with HMB2) 
§ 2D vectorization is critical in  increasing 

throughput
§ Porting kernel CODE from GPU to FPGA 

requires extensive changes
§ Final Verdict: Performance is portable, 

not the code.
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FPGA GPU

Device Intel PAC D5005 Stratix 
10 GX

NVIDIA TITAN V 

Performance
(for Pileup events)

68 𝞵s/event 59 𝝻s/event
Includes event data transfer

Frequency 305 MHz 1.2GHz (1.5GHz boost)

Global memory DDR4 2400 HBM2

Memory bandwidth 
(theoretical)

38.4 GB/s 653 GB/s 

Very different 
architecture: Difficult to 
compare like with like

56-way mixed 
parallelism:
3 kernels  (2D vectorized) 
executed in parallel

80 streaming 
multiprocessors:
64 cores each,
5120 CUDA cores,
Warps of 32 threads 
executed in “parallel”


