

Science and Technology Facilities Council

Pattern Matching: Migrating CUDA to oneAPI on Intel FPGA

Abdeslem Djaoui Dmitry Emeliyanov & John Baines

Abdeslem Djaoui

Meeting 22/11/2023

2 First target: A functionally correct version running on the FPGA

3 Optimizations landscape

4 Further Parallelization steps and techniques

5 Results so far: How does it compare to GPU

oneAPI in a nutshell

- Framework for programming accelerator devices based on SYCL (C++), plus Data Parallel (DPC++) additions
- Higher abstraction than HLS and OpenCL ("easier to program!")
- Multiple device selectors target different devices
 - cpu_selector, gpu_selector, accelerator_selector
 - fpga_emulator_selector, fpga_selector
- Portability varies depending on device
- SYCL queues for offloading work from host to device
 - Similar to CUDA Streams
 - Used for both kernels and memory copy operations
 - After submission, host continues to execute, while device, eventually (asynchronously) does the work, unless *wait()* is specified.

oneAPI: Data Management

- 2 Options for data creation/movement between host and device
- Unified Shared Memory USM
 - Pointer based approach (like C++)
 - Both explicit and implicit data movement depending on allocation type (device, host or shared)
- Buffers and accessors (SYCL)
 - Buffers can be created and initialized with data residing on the host
 - Runtime performs implicit data movement from host to device
 - Buffers (not initial data) accessed from device and host using accessor objects
 - Different concept from USM
 - Can be mixed with USM if needed

oneAPI Kernels

- 2 types of kernels
- ND-range kernels (similar to CUDA kernels)
 - Suitable for porting CUDA to oneAPI on GPU
 - Tools available for easy porting of CUDA code to oneAPI ND-range on GPUs
 - Not easily optimized on FPGA
- Single Task kernels (FPGA specific)
 - Looks sequential in nature (like legacy code)
 - oneAPI compiler automatically tries to pipeline iterations in <u>loops</u>
 - Many options for optimization available
 - No tools available for easy porting of CUDA to single task kernels

Abdeslem Djaoui

2 First target: A functionally correct version running on the FPGA

First Kernel Version: inspired by CUDA

Host side code

- USM for memory management
 - Explicit copy of data from host to device
 - Explicit copy of results from device to host
- A Kernel loop for each event, <u>on the host</u> {
- On the device:
 - Single task kernel
 - Read event data from global to local memory (on chip)
 - Loop for pattern blocks {
 - Nested loop for patterns for each block {
 - Nested loop for pattern matching accumulator count { }}}
- Typical development flow:
 - Emulation (seconds) for functional correctness
 - report generation (minutes) for details about issues hindering the creation of an effective pipeline
 - generate hardware bitstream for programming FPGA (hours) and run it
 - Profiling it (also requires a separate hardware generation bitstream)

First version and results

- Some necessary restructuring
 - Error: Atomics not supported in systems with more that one global memory (DDR4 and USM)
 - Move some load/stores to local memory
 - Only update global memory after pipelined loop exists
 - One load operation per clock cycle, no need for Atomics
- Result: ~1000x slower than GPU
 - Compiler tries and fails to build an efficient pipeline
 - Outside blocks loop on the device executed serially
 - Memory dependencies in nested loops
- Low Fmax: 242MHz (Maximum 480MHz)
- But <u>functionally correct</u>
- Verdict: Code is fairly portable, not the performance.

2 First target: Functionally correct version running on the FPGA

3 Optimizations landscape

Available FPGA execution types

- Sequential: one task at a time
- Parallel: Multiple tasks or operations executed simultaneously
 - GPU/CPU have pre-configured hardware (cores) for this
 - FPGA compiler automatically executes all independent operations on the FPGA spacial area in parallel (limited without modifications)
- Pipelined (FPGA specific):
 - <u>Operations</u> in a task split into multiple stages
 - Feed forward of data items
 - Multiple items running in parallel in different pipeline stages (~ Latency/Initiation Interval)
- Mix the types on the FPGA as needed
 - Implement parallelism similar to GPU/CPU (generally not too scalable)
 - Or go beyond what exists on GPU/CPU and devise own custom hardware that suits your application

Abdeslem Djaoui

First "efficient" pipeline

- Use buffers for both event and pattern data
 - Uploaded to device automatically before execution starts
- Use USM for results
 - Downloaded to host automatically by kernel
- A single loop over all patterns (merge blocks and patterns loops)
- Further modifications to lower the II
 - Unroll nested pattern matching count loop (removes some data dependencies)
 - Reduce global memory loads by coalescing loads
- II=1 achieved (best for throughput)
- Resulting <u>Kernel code</u> already quite different from initial CUDA code
- results:
 - Performance: <u>40 x</u> slower than GPU
 - Will need 40 x parallelism or more for similar performance
 - Most used resource: RAM blocks: 8% (out of 68% available)
- Some benefit of major restructuring the code:
 - An obscure bug was discovered in the CUDA version

2 First target: A functionally correct version running on the FPGA

3 Optimizations landscape

4 Further Parallelization steps and techniques

<u>4.1</u> Parallelism: 1D Vectorization execution

- Type of parallel execution where <u>operations</u> performed on multiple data-items simultaneously for each event e
 - For 2 items d0 and d1:
 - 2 x Parallel operations on 2 data-items at different pipeline stages in each clock cycle
 - Implemented in hardware as a deeper pipeline with 2 parts: (d0, e) (d1-e)
- Similar to SIMD on CPU or warps on GPU (best analogy)
- Difference is:
 - Hardware for CPU/GPU already exists
 - For FPGA, need to help compiler build required hardware by structuring code accordingly
- Cost: Resources needed for implementing the deeper pipeline

Pattern data 1D vectorization steps and results

- Coalesce loads from global memory for a vector of P of (2, 4, 8) patterns
- Trip count for pipelined pattern loop is reduces by P
 - Improving throughput by P compared to 1 pattern
- On-Chip memory usage increases ~ linearly with P
- Scalability only limited by
 - Potential pipeline stalls, waiting for Global memory loads to finish
- Vector of 4 Patterns selected for next steps

Abdeslem Djaoui

<u>4.2</u> 2D vectorization (patterns and events)

- Interleave loop event iterations from host into patterns loop pipeline on FPGA
 - Higher-level granularity data (events) processed in parallel with lower-level data (patterns)
 - For 2 events (e0,e1) and 2 patterns (do,d1):
 - Deeper pipeline constructed with 4 parts: (d0, e0)-(d0,e1)-(d1,e0)-(d1,e1)
 - All operation performed simultaneously in each clock cycle in different parts of pipeline
- This results in a hardware custom made 2D vectorization unit
 - No equivalent exists on CPU or GPU
- Most problems targeting GPUs can be thought of as operating on 2 levels of data granularity one on host and one on device
 - Could benefit from 2D vectorization on FPGAs to increase throughput

2D vectorization and results for N events

- Advantages of 2D vectorization:
 - Overhead of loading data from global memory shared by N events
 - Compacting pattern data results in only 1 load operation
 - This results in reduction of required gradients accesses to Global memory
 - Overhead of Kernel launch also shared by N events
- N events x P patterns processed simultaneously in each cycle (4p x 6e=24)
- Good scaling compared to (4 patterns and 1 event)
 - Limited by:
 - increase in amount of data read before pipeline execution
 - Available resources (RAM blocks) on the FPGA

Abdeslem Djaoui

RAM blocks

%

<u>4.3</u> Multiple Kernels and results

- Submit multiple task Kernels in parallel (already 2D vectorized)
 - "Similar" to Streaming Multiprocessors on GPU
- Good scaling, but limited by:
 - Total embedded memory usage reaching 100%
 - 3rd kernel has only 2 events
 - SYCL Queue overhead of launching kernels increases with the number of kernels
- In total <u>56-way</u> parallelism achieved compared to initial pipeline (40 required): (2k x (4p x 6e)+1k x 4p x 2e)

2 First target: A functionally correct version running on the FPGA

3 Optimizations landscape

4 Further Parallelization steps and techniques

5 Results so far: How does it compare to GPU

FPGA versus GPU

- Similar throughput
- Pattern Matching is a Memory Bandwidth intensive application
 - GPU has a huge advantage in this regard
- To summarise:
 - FPGA processes 14 events in 3 parallel kernels
 - GPU: 1 event, 1 kernel at a time
 - FPGA (with DDR4) results within 12% of FPGA (with HMB2)
 - 2D vectorization is critical in increasing throughput
 - Porting kernel CODE from GPU to FPGA requires extensive changes
 - Final Verdict: Performance is portable, not the code.

	FPGA	GPU
Device	Intel PAC D5005 Stratix 10 GX	NVIDIA TITAN V
Performance (for Pileup events)	68 µ s/event	59 μs/event Includes event data transfer
Frequency	305 MHz	1.2GHz (1.5GHz boost)
Global memory	DDR4 2400	HBM2
Memory bandwidth (theoretical)	38.4 GB/s	653 GB/s
Very different architecture: Difficult to compare like with like	56-way mixed parallelism: 3 kernels (2D vectorized) executed in parallel	80 streaming multiprocessors: 64 cores each, 5120 CUDA cores, Warps of 32 threads executed in "parallel"

