Search for T_{bc}. Prospects for Run3

Ivan Polyakov, CERN

T_{bc} at LHCb mini-workshop 5 October 2023

Motivation

 >35 different states discovered since 2003

Still can't understand their nature

- Unambiguous experimental input is needed
 - T_{cc} is the best example so far (δm =-360±40 keV)

Other doubly-heavy states, [QQud]

• The T_{bb} **[bb][ud]** is likely long-lived... ... but yields are suppressed due to x-section and BR($b \rightarrow D\pi/\mu$) \rightarrow expect only ~10⁻³ events in Run3&4

 T_{bc} [bc][ud] may be below BD threshold by O(10) MeV

> Karliner, Rosner, 2017 Semay, Sllvestre-Brac, 1994 Carames, Vijande, Valcarce, 2019 Meng et al., 2021

Opposite expectations in some

molecular models Li, Sun, Liu, Zhu, 2012 Liu et al., 2019 Hudspith et al., 2020

what your model predicts?

Much more interesting!

Ivan Polyakov, CERN / LHCb mini-workshop. Tbc

Question to theory: Can we say T_{bc} is within ±25MeV of BD threshold?

The two cases

- Having mass below/above BD threshold means very different signatures
 - δm<0: only weakly decaying, long-lived

Question to theory: Does it unambiguosly tells about the nature of binding mechanisms?

Ivan Polyakov, CERN / LHCb mini-workshop. Tbc

T_{bc}

Estimations of sensitivity in Run3

Compare to Steven Blusk's presentation at

LHCb mini-workshop: Tcc and beyond, Sept 2021

Summary

- $T_{bc[\overline{u}\overline{d}]}^{0}$ tetraquarks could be within reach for Run 3 + 4 of LHCb.
 - Strong or weak decays, O(100 or even 1000+ signal) potential
 - Could begin to lay the groundwork with Run 2 data (maybe get lucky!)
- A more definitive statement requires:
 - A full simulation of the signal and dominant backgrounds
 - For weak decays, predictions for the branching fractions would be helpful.
- My estimations are factor ~100 more pessimistic (to be discussed in following)
- LHCb in Run3 vs. Run1&2
 - 20 fb⁻¹ at 14 TeV vs. 5+3fb⁻¹ at 13 TeV +8/7TeV
 - efficiency higher by factor 1-2x
 - overall gain up to 5x

T_{bc} production cross-section

- Various predictions can be found in literature:
 - 103⁺³⁹ nb for pp at 13 TeV Ali, Qin, Wang, 2018
 - 0.3-0.4 nb for pp at 14 TeV [Chen, Wu, 2011]
- Can estimate via T_{cc} cross-section & assuming $\sigma(T_{bc})/\sigma(T_{cc}) \sim \sigma(\Xi_{bc})/\sigma(\Xi_{cc}) \sim 0.4$

$$\frac{\sigma(pp \to T_{cc}^+)}{\sigma(pp \to \chi_{c1}(3872))} \sim 0.05 \qquad \sigma(pp \to \chi_{c1}(3872))$$

$$\sigma(pp \to \chi_{c1}(3872)) \sim 0.9 \,\mu \mathrm{b}$$

Zhang et al., 2011

Steve's number: **100 nb**

Question to theory: **How reasonable this is?**

Weakly-decaying T_{bc}. Lifetime

- Expect lifetime similar to \(\mathbb{E}_{bc}\) (0.28-0.33 ps) [Kiselev, Likhoded, 2002]
- In same spirit estimate decay widths to be:
 - $\mathbf{b} \rightarrow \mathbf{C}$: $\Gamma_{b} = 0.63 \text{ ps}^{-1}$

with possible correction due to Pauli interference of $\Gamma_{b,corr} = (0.2\pm0.2) \text{ ps}^{-1}$

• c → s: Γ_c = (1.2±0.2) ps⁻¹

with correction due to Pauli interference & weak-scattering effects $\Gamma_{c,corr} = (1.5 \pm 0.5) \text{ ps}^{-1}$

• W exchange in $\mathbf{b} \rightarrow \mathbf{c} \& \mathbf{c} \rightarrow \mathbf{s}$: $\Gamma_{W} = (0.20 \pm 0.15) \text{ ps}^{-1}$

Summing altogether get τ(T_{bc}) = (0.27±0.04) ps

and following probabilities:

 $f_{b} = 0.22 \pm 0.04,$ $f_{c} = 0.72 \pm 0.04,$ $f_{w} = 0.06 \pm 0.04,$ Question to theory: Should the uncertainties be reduced/increased?

Weakly-decaying T_{bc}. Branching fractions

T_{bc}^0 decay	${\cal B}$ estimation	analogous <i>B</i> -decays	\mathcal{B} , exp	T_b^0	c^{0} decay	\mathcal{B} estimat	ion	analogous B/D -o	decays	\mathcal{B}, \exp
$b \rightarrow D + hadrons$ decay modes							$c \rightarrow s$	transition		
$D^0 D^0$	$10^{-3} \times f_b$		—	\overline{B}	${}^{0}K^{-}\pi^{+}$	$(4 \pm 1)\%$	$\times f_c$	$D^0 ightarrow D^0$	$K^{-}\pi^{+}$	$(3.95 \pm 0.03)\%$
	or $10^{-3} \times f_W$			B^-K	$\pi^+\pi^+$	(7.5 ± 2.5)	$)\% \times f_c$	$D^+ \to K^-$	$\pi^+\pi^+$	$(9.38 \pm 0.16)\%$
$D^0 D^+ \pi^-$	$(2.5-5.0) \times 10^{-3} \times f_b$	$B^- \rightarrow D^0 \pi^-$	$(4.61 \pm 0.10) \times 10^{-3}$					$D_s^+ \to K^+$	$K^{-}\pi^{+}$	$(5.39 \pm 0.15)\%$
		$\overline{B}{}^0 \to D^+ \pi^-$	$(2.51 \pm 0.08) \times 10^{-3}$					$\Lambda_c^+ \to p$	$K^{-}\pi^{+}$	$(6.28 \pm 0.32)\%$
		$B_s^0 \to D_s^+ \pi^-$	$(2.98 \pm 0.14) \times 10^{-3}$	$\overline{B}{}^{0}K^{-}\pi$	$^{+}\pi^{+}\pi^{-}$	$(8 \pm 2)\%$	$\times f_c$	$D^0 \to K^- \pi^+$	$\pi^+\pi^-$	$(8.22 \pm 0.14)\%$
		$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	$(4.9 \pm 0.4) \times 10^{-3}$	$\overline{B}{}^{0}K$	$K^-\mu^+ \nu$	$(3\pm 1)\%$	$\times f_c$	$D^0 \rightarrow K$	$\zeta^{-}\mu^{+}\nu$	$(3.41 \pm 0.04)\%$
$D^{*0}D^{+}\pi^{-}$	$(5.2 \pm 0.5) \times 10^{-3} \times f_b$	$B^- \rightarrow D^{*0} \pi^-$	$(5.17 \pm 0.15) \times 10^{-3}$	$\overline{B}{}^{0}K$	$K^-\mu^+ X$	$(2\pm 1)\%$	$\times f_c$	$D^0 \to K$	$^{*-}\mu^{+}\nu$	$(1.89 \pm 0.24)\%$
$D^{*+}D^0\pi^-$	$(2.7 \pm 0.3) \times 10^{-3} \times f_b$	$\overline{B}{}^0 \to D^{*+}\pi^-$	$(2.74 \pm 0.13) \times 10^{-3}$,			$D^0 \rightarrow K^-$	$\pi^0 e^+ \nu$	$(1.6^{+1.3}_{-0.5})\%$
$D^+D^+\pi^-\pi^-$	$(1-8) \times 10^{-3} \times f_b$	$B^- \rightarrow D^+ \pi^- \pi^-$	$(1.07 \pm 0.05) \times 10^{-3}$	B^-K^-	$\pi^+\mu^+ \nu$	(3.5 ± 1.5)	$)\% imes f_c$	$D^+ \to K^- \pi^+ \mu$	$u^+ \nu_{sum}$	$(3.65 \pm 0.34)\%$
		$B^0 \to D^+ \rho^{[\pi^- \pi^0]}$	$(7.6 \pm 1.2) \times 10^{-3}$				W exchan	ge in $bc \to cs$		
		$B_s^0 \to D_s^- \rho^+{}_{[\pi^+\pi^0]}$	$(6.8 \pm 1.4) \times 10^{-3}$	D	${}^{0}K^{-}\pi^{+}$	$(5\pm4)\times$	$10^{-4} \times f_W$		_	
$D^0 D^0 \pi^+ \pi^-{}_{NR}$	$(0.9 \pm 0.4) \times 10^{-3} \times f_b$	$B^0 \rightarrow D^0 \pi^+ \pi^-$	$(0.88 \pm 0.05) \times 10^{-3}$		D^+K^-	$(5\pm4)\times$	$10^{-4} \times f_W$		—	
$D^0 D^+ \pi^- \pi^0{}_{NR}$	$(1.0\pm0.3)\%\times f_b$	$B^- \to D^0 \rho^-{}_{\pi^- \pi^0}$	$(1.34 \pm 0.18) \times 10^{-2}$		$D^0 K_{ m S}^0$	$(5\pm4)\times$	$10^{-4} \times f_W$			
	1 . 7	$ B^0 \to D^+ \rho^{\pi^- \pi^0} $	$(0.76 \pm 0.12) \times 10^{-2}$		5		$b \rightarrow u$	transition		
D0 D+ -	$b \rightarrow L$	$p + \mu X$ decay modes	(0.00.1.0.00)0/	L	$0^{0}\pi^{+}\pi^{+}$	$(3\pm 2) \times$	$10^{-5} \times f_b$	$B^+ \rightarrow$	$\pi^+\pi^0$	5.5×10^{-6}
$D^{*}D^{*}\mu^{-}\nu$	$(2.3 \pm 0.1)\% \times f_b$	$B \to D^{\circ} \mu^{\nu} \nu$ $\overline{D}^{0} \to D^{+} \nu^{-} \nu^{-}$	$(2.30 \pm 0.09)\%$		$D^+\pi^-$	(3 ± 2) ×	$10^{-5} \times f_b$	$B^+ \to \pi^+$	$\pi^+\pi^-$	$1.5 imes 10^{-5}$
$D^{*0}D^+u^-u$	$(5.1 \pm 0.2)\% \times f_{0}$	$\frac{B^{\circ} \rightarrow D^{+} \mu^{-} \nu}{B^{-} \rightarrow D^{*0} \mu^{-} \nu}$	$\frac{(2.24 \pm 0.09)\%}{(5.20 \pm 0.00)\%}$	$D^+\pi$	$+\pi^{-}\pi^{-}$	(3 ± 2) ×	$10^{-5} \times f_b$	$B^0 ightarrow$	$\rho^+\pi^-$	2.3×10^{-5}
$D^{0}D^{*+}\mu^{-}\mu^{-}$	$(5.1 \pm 0.2) / 0 \times f_b$ $(5.1 \pm 0.2) / 0 \times f_c$	$\overline{B}^0 \rightarrow D^* \mu^- \nu$	$(3.30 \pm 0.09)\%$ $(4.07 \pm 0.12)\%$			<u>`````````````````````````````````````</u>				
$D D \mu \nu$ $D D \mu - V$	$(3.1\pm0.2)/0 \times f_b$	$\frac{D \rightarrow D \mu \ \nu}{D^{+/0} \rightarrow D^{+} \nu^{-} V}$	$(4.97 \pm 0.12)/0$			1				01
$D^*D^*\mu^*X$	$(2-8)^{\gamma_0} \times J_b$	$D_{mix} \rightarrow D^+ \mu^- X$ $D^{+/0} \rightarrow D^0 - X$	$(2.0 \pm 0.5)\%$		Cha	nnei	IVIY E	estimation		Steves
		$B_{mix} \rightarrow D^{\circ} \mu X$	$(7.3 \pm 1.5)\%$							number
		$B^+ \to D\mu^- X$ $\overline{D}^0 \to D\mu^- Y$	$(9.0 \pm 0.7)\%$							namber
	$h \to I/c/$	$B^* \to D\mu \Lambda$	$(9.3 \pm 0.8)\%$		DD+	-h	()	02-0 2)%		10/6
U_{a} , $D^+ V^-$	$\frac{0 \rightarrow J/\psi}{(1 \ 0 \pm 0 \ 1) \times 10^{-3} \times f}$	+ naarons decay mode	$\frac{8}{(1.02 \pm 0.02) \times 10^{-3}}$		ישש	11	(0	.02 0.2)/0		T 10
$J/\psi D^0 K^0$	$(1.0 \pm 0.1) \times 10^{-3} \times f_b$ $(0.45 \pm 0.05) \times 10^{-3} \times f_b$	$\overline{B}^0 \to J/\psi K_c^0$	$(1.02 \pm 0.02) \times 10^{-3}$ $(0.89 \pm 0.02)/2 \times 10^{-3}$.1/ւհր)+h	(0 (1-0 03)%		1%
$\frac{J/\psi D^0 K^{*-}}{J/\psi D^0 K^{*-}}$	$(1.3 \pm 0.2) \times 10^{-3} \times f_{\rm b}$	$\frac{B^- \to J/\psi K^{*-}}{K^{*-}}$	$(1.43 \pm 0.08) \times 10^{-3}$		σφ	× • • •	(0.0	1 0.00)/0		± /0
0/42 11		$\overline{B}{}^0 \rightarrow J/\psi K^{*0}$	$(1.27 \pm 0.05) \times 10^{-3}$		R+h			(3-6)%		10/6
		$B^0_{\bullet} \rightarrow J/\psi\phi$	$(1.04 \pm 0.04) \times 10^{-3}$		חים			(0 0)/0		T \0
		$\Lambda_b^0 \to J/\psi \Lambda(1520)$	$(0.32 \pm 0.06) \times (0.19 \pm$		Dh			~1∩ -5		
$J/\psi D^0 K^- \pi^+{}_{NB}$	$(0.3 - 1.2) \times 10^{-3} \times f_h$	$\overline{B}{}^0 \to J/\psi K^- \pi^+{}_{NB}$	$(1.15 \pm 0.05) \times 10^{-3}$					TO		
		$B_s^0 \to J/\psi K^+ K^-{}_{NR}$	$(0.79 \pm 0.07) \times 10^{-3}$				unotion	to theory		
		$\Lambda_b^0 \to J/\psi p K^-{}_{sum}$	$(0.32 \pm 0.06) \times 10^{-3}$			Q	uestiol	i to theory.		
	1				C	an vo	ni nro	nvide ue	wit	h
1	-0.2210.04 f -	0.7210.04 f	-0.0010.01			αιιγι	να μι	JVIUC US	VVIL	

 $f_{b} = 0.22 \pm 0.04, f_{c} = 0.72 \pm 0.04, f_{w} = 0.06 \pm 0.04,$

Ivan Polyakov, CERN / LHCb mini-workshop. Tbc

better estimates?

Efficiencies

Use toy formula:

 $\varepsilon = \varepsilon_{trig} \times \varepsilon_{tau} \times \varepsilon_{base} \times \varepsilon_{tracks}$

- trig: 90% for J/ψ+X final state
 & 60(30)% for D+X final state for Run3(2)
- tau: $1 \exp(-\tau / 0.4 \text{ ps})$ (53% for $T_{bc'}$, 71% for $B_{c'}$, 97% for B)
- base: 50%
- tracks: $\Pi_i \epsilon_{tr,i}$, where for every charged tracks $\epsilon_{tr,i}$ is
 - 40% if directly from H_{bc} hadron
 - 40% if directly from B_c meson
 - 50% if from B/D meson

Efficiencies

Use toy formula:						
$\varepsilon = \varepsilon_{trig} \times \varepsilon_{tau} \times \varepsilon_{base}$		×ε * here ε inc	ludes	$\varepsilon_{acc} = 27\%$ which	_	
• trig: 90% fo	or J/ψ+X	, correspond b-quark in	ls to pr LHCb	robability of havin acceptance	g	
	% f∩r I)-	10-41		r Kun3(Z)		
$\begin{array}{c} B_c^+ \to J/\psi K^+ \\ B_c^+ \to J/\psi \pi^+ \pi^+ \pi^- \\ B_c^+ \to J/\psi K^+ K^- \pi^+ \end{array}$	$\varepsilon_{est}[10]$ 55 8.9 8.9	$\begin{array}{c c} \varepsilon_{MC}[10 &] \\ \hline 45 & 31] \\ \hline 7.8 & 32] \\ \hline 10 & 32] \end{array}$	1.2 1.1 0.9	1% for B _c , 97% fe	or B)	
$B_c^+ \to J/\psi K^+ \pi^+ \pi^-$ $B_c^+ \to J/\psi 5\pi$ $B_c^+ \to I/\psi 2K^2 \pi$	8.9 1.4	$\begin{array}{ccc} 6.8 & [32] \\ 1.4 & [33] \\ 1.1 & [22] \end{array}$	$1.3 \\ 1.0 \\ 1.2$	Channel	this estimation	Steve's number
$\begin{array}{c} B_c^+ \to J/\psi 2K3\pi \\ B_c^+ \to J/\psi 7\pi \end{array}$	0.23	0.31 33	$1.3 \\ 0.7$	$J T_{bc} \rightarrow D^0 D^+ \pi^-$	0.2%	0.7%
$B_c^+ \to J/\psi D_s^+$	17.3	20 34]	0.9	^ε Τ _{bc} → J/ψD ⁺ K ⁻	0.2%	2.4%
$\begin{split} \Xi_{bc} &\to \Lambda_c^+ \pi^+ \\ \Xi_{bc} &\to \Xi_c \pi^+ \\ \Xi_{bc} &\to D^0 p K^- \end{split}$	10.7 10.7 8.6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0.7 \\ 0.5 \\ 1.1$	${}^{\Xi}$ T _{bc} \rightarrow B ⁰ K ⁻ π^+ , B ⁰ \rightarrow J/ ψ K ⁻ π^+	0.24%	2.4%
Good up to ±25%						

Expected yields

- Expected yields: $\mathbf{N} = \boldsymbol{\sigma} \times \mathcal{L} \times \mathcal{B} \times \mathcal{B}_{B,D,J/\psi} \times \boldsymbol{\varepsilon}$
 σ = 20 nb L = 20 fb⁻¹ (Run3)
 O(1-10) signal events in individual modes → expect O(100) in 20-40 channels combined + O(100) in SL
 Reality may differ a lot, by factor 0.3-3x easily → all classes are important
 Gain a lot from many modes like D⁰ → Kπ & K3π, B → J/ψK, Dπ, Dπ modes

Ivan Polyakov, CERN / LHCb mini-workshop. Tbc

decay channel	$\varepsilon_{tot} \times \mathcal{B} \ [10^{-9}]$	Expected yield
fully re	econstructed char	nnels
$D^0 D^0$	7.8	3.1
$D^0 D^+ \pi^-$	9.2	3.7
$D^0 D^0 \pi^+ \pi^-$	3.4	1.4
$D^+D^+\pi^-\pi^-$	3.5	1.4
sum		10
$J/\psi D^+K^-$	2.3	0.9
$J/\psi D^0 K^- \pi^+$	3.1	1.2
sum		2.1
$\overline{B}{}^{0}K^{-}\pi^{+}$	32.9	13.2
$B^-K^-\pi^+\pi^+$	33.6	13.4
$\overline{B}{}^0K^-\pi^+\pi^+\pi^-$	6.7	2.7
sum		29
$\overline{B}{}^{0}{}_{SL}K^{-}\pi^{+}$	188	75
$B^-{}_{SL}K^-\pi^+\pi^+$	94	38
$\overline{B}{}^{0}{}_{SL}K^{-}\pi^{+}\pi^{+}\pi^{-}$	61	24
sum		137
$D^0 D^+ \mu^- u$	56	22
$D^0 D^0 \pi^+ \mu^- u$	43	17
$D^0 D^+ \mu^- + X$	163	65
$D^0 D^0 \mu^- + X$	108	43
sum		147
$\overline{B}{}^0K^-\mu^+ u$	24	9.5
$B^-K^-\pi^+\mu^+\nu$	16	6.5
sum		16
$D^0 K^- \pi^+$	68	27
D^+K^-	134	54
$D^0\pi^+\pi^-$	2.5	1
$D^+\pi^-$	4.9	2
sum		84

11

Combining channels together

- Simultaneous mass fit for 20-40 channels
- All shapes are fixed, yields are free (can one use constraints?)
- Scan common $m(T_{hc})$ in [-25;0] MeV within \overline{B}^0D^0 threshold

Ivan Polyakov, CERN / LHCb mini-workshop. Tbc

Strongly-decaying T_{bc}

- Decaying to $\overline{B}^0 D^0 \& B^- D^+$ with BRs=50%
- Estimate expected yields in the same manner
- Signal peaks are likely within ~1MeV of threshold
 → even 40 events could give >5σ significance

decay channel	$\varepsilon_{tot} \times \mathcal{B} \ [10^{-9}]$	Expected yield			
B in fully reconstructed modes					
$\overline{B}{}^0D^0$	90	36			
B^-D^+	108	43			
sum		79			
B in semi-leptonic modes					
$\overline{B}{}^0D^0$	560	225			
B^-D^+	300	120			
sum		345			

Control channels

Natural choice to use decays of B_c mesons:

- J/ ψ DX: B_c \rightarrow J/ ψ D_s (4k), B_c \rightarrow J/ ψ D^{(*)0}K⁺ (1.1k)
- BX: $B_c \rightarrow B_s \pi^+$ (1.8k), $B_c \rightarrow B^{(*)+}K^+\pi^+$ (900)
- DDX: $B_c \rightarrow \overline{D}{}^0D^+$ (?), $B_c \rightarrow \overline{D}{}^0D^0\pi^+$ (?)
- DX: $B_c \rightarrow D^0 K^+$ (250), $B_c \rightarrow D^+ K^+ \pi^-$ (600)
- Possibly also (not-yet-discovered) Ξ_{bc}
 - Larger x-section.
 - Lower BRs of baryon decays

my estimation:

- $\sigma(pp \rightarrow \Xi_{bc} + X) \sim 100 \text{ nb in } p_T > 4 \text{ GeV}$
- [Zhang et al]: ~37nb for p_{τ} >4 GeV
- \rightarrow expect O(10) of events in Run3 (see backup)

- For strongly-decaying states:
 - B⁻D⁰ & B⁰D⁺ from DPS or B_c** (0.5-5k)

see <u>Quan Zou, B&Q meeting, Nov 2022</u>

Common framework

Simplifying and automatizing analysis steps as much as possible

- Merging decay modes in simulation and ntuple production
- Training MVA for selection and optimising final cut
- Signal shapes (mass resolution & reflections) from MC
- Efficiencies from MC
- Simultaneous fits for various combinations of decay modes

 → dedicated toyMC to estimate significances
- Setting upper limits while accounting for variations in - efficiency, T_{hc} lifetime, expected BRs

Preparations

- Most of Hlt2/Sprucing lines already prepared (in B&Q and B2OC), few Sprucing lines to be added
- Forming a group of interested people to join the efforts:
 - Steve (Syracuse),
 - Yiming, Mingjie, ... (IHEP),
 - Paolo (Milano)

Let me know if you're interested

 Roadmap document is in progress

LHCb LHCb-INT-2023-YYY October 2, 2023	Contents	1
Search for T_{bc}^{0} tetraquark (Roadmap)	2 Most promising channels for the search 2.1 Long-lived case 2.2 Promptly-decaying case 3.3 Simultaneous mass fit 3.4 Selection 3.5 Efficiency 3.6 Control channels 3.7 Discussion of backgrounds 3.8 Hlt2/Sprucing lines	2 2 3 4 4 6 7 8 9 9 9 9
Ivan Polyakov ¹ . ¹ CERN, Switzerland	A Expected T_{bc}^0 production cross-section 1 A.0.1 Estimations for B_c^+ cross-section 1 A.0.2 Estimations for Ξ_{cc} cross-section 1 B Weakly decay branching fractions 1	.0 1 1
	C Efficiency estimation formulas 1 D. Estimation of officiencies and expected yield for long list of decay modes 1	.5
	E Estimation of efficiencies and expected yield for selected Ξ_{bc} decay modes 2	21
Abstract In this note a strategy for search of a T_{L}^{0} tetraquak in Run3 of LHCb is presented.	F List of Hlt2/Sprucing lines 2 G Potential of CMS 2	22 24
Both cases of weakly-decaying (and thus long-lived) and strongly-decaying T_{bc}^0 are considered.	References 2	26

Other T_{bc} states

- The ground [bcud] state mass is around B⁰D⁰ threshold if it's difference to B⁰D⁰ is <4.5 MeV
 should decay predominantly to B⁰D⁰
 - \rightarrow should decay predominantly to **B**⁰**D**⁰
- If there is also a B*D molecule, it's mass is ~0.1-1 MeV below B*⁰D⁰ threshold
 → should decay predominantly to [B⁰γ]_{R*}D⁰
- If there is also a BD* molecule, ...
 → should decay predominantly to B⁰[D⁰π⁰/γ]_{D*}
- If there is also a B*D* molecule, …
 → should decay predominantly as
 [B⁰γ]_{B*}D*⁰ or B*⁰[D⁰π⁰/γ]_{D*} → [B⁰γ]_{B*}[D⁰π⁰/γ]_{D*}
- We can't reconstruct $\pi^0/\gamma \rightarrow all$ give peak in $\overline{B}{}^0D^0$

	m _{th} (E	B ^{(*)-} D ^{(*)+})	$- m_{th}(\overline{B}^{(*)0}D^{(*)0})$
BD		4.50	±0.05 MeV
B*D		3.91	±0.26 MeV
BD*		3.09	±0.06 MeV
B*D*		2.50	±0.26 MeV
			Г
		D*0	55 keV

D*+

B*

Question to theory: Can they all co-exist?

83 keV

<10 keV ?

Prospects of CMS

• CMS/ATLAS sometimes appears to be very competitive to LHCb: $B_c(2S), X \rightarrow J/\psi J/\psi, \chi_b(3P), \Xi_b(5945)^0, \Xi_b(6100)^-$

Contr's:

- only modes with J/ψ
- in general efficiency lower by ~20x
- no hadron PID

Pro's:

- 150fb⁻¹ (Run2) + 250fb⁻¹ (Run3)
- 49% of b-quarks are within CMS acceptance vs 27% for LHCb
- good efficiency for tracks additional to reconstructed B-meson
- good efficiency for K_s^o
- $\varepsilon_{tot} \times \mathcal{B} \left[10^{-9} \right]$ decay channel Expected yield fully reconstructed channels Expected yields for Run2&3: $\overline{B}{}^{0}K^{-}\pi^{+}$ 0.101.4 ~36 events in 5 modes $B^-K^-\pi^+\pi^+$ 0.263.7 + 47 in modes with B^*/D^* $\overline{B}{}^{0}K^{-}\pi^{+}\pi^{+}\pi^{-}$ 0.131.9 $J/\psi D^+K^-$ 0.547.8 $J/\psi D^0 K^- \pi^+$ 1.4521 36 sum

Conclusion

- Feasible in Run3, but only if many modes (20-40) are combined
- A group is forming, preparation work started
- Should not ignore CMS/ATLAS
- Questions to theory:
 - 1. Will observing $\delta m(T_{bc})$ <0 or >0 unambiguously tell about the nature of binding mechanism?
 - 2. Is searching in range -25< $\delta m(T_{bc})$ <25 MeV enough?
 - 3. How well we can predict
 - a) x-section,
 - b) lifetime,
 - c) BRs?
 - 4. Can we have states near $\overline{B}D$, \overline{B}^*D , $\overline{B}D^*$ and \overline{B}^*D^* thresholds all at once?

Expected yields

Expected yields:

 $\mathsf{N} = \boldsymbol{\sigma} \times \mathcal{L} \times \mathcal{B} \times \mathcal{B}_{\mathsf{B},\mathsf{D},\mathsf{J}/\psi} \times \boldsymbol{\varepsilon}$

• σ = 20 nb

• $\mathcal{L} = 20 \text{ fb}^{-1}$ (Run3)

decay channel	$\varepsilon_{tot} \times \mathcal{B} \ [10^{-9}]$	Expected yield			
fully reco	onstructed chann	els		10-01	
$D^{0}{}_{K\pi}D^{0}{}_{K\pi}$	3.4		decay channel	$\varepsilon_{tot} \times \mathcal{B} [10^{-9}]$	Expected yield
$D^{0}{}_{K\pi}D^{0}{}_{K3\pi}$	3.5		channels with γ	from $B^* \to B\gamma$	not reconstructed
$D^0{}_{K3\pi}D^0{}_{K3\pi}$	0.9		$B^{*0}K^{-}\pi^{+}$	32.9	13.2
sum	7.8	3.1	$B^{*-}K^{-}\pi^{+}\pi^{+}$	33.6	13.4
$D^{0}{}_{K\pi}D^{+}\pi^{-}$	6.0		$B^{*0}K^{-}\pi^{+}\pi^{+}\pi^{-}$	6.7	2.7
$D^{0}{}_{K3\pi}D^{+}\pi^{-}$	3.2		sum		29
sum	9.2	3.7	channels with π/γ	from $D^* \to D\pi$	γ not reconstructed
$D^0[D^0\pi^+]_{D^{*+}}\pi^-$	2.3		$D^{*0}{}_{D^0\pi^0}D^+\pi^-$	8.2	
$D^0 D^0 \pi^+ \pi^- {}_{NB}$	1.1		$D^{*0}{}_{D^0\gamma}D^+\pi^-$	4.5	
sum	3.4	1.4	$D^0 D^{*+}{}_{D^+\pi^0}\pi^-$	2.0	
$D^+D^+\pi^-\pi^-$	3.5	1.4	sum	14.7	5.9
$J/\psi D^+ K^-$	2.3	0.9	$D^{0}D^{*+}{}_{D^{0}\pi^{+}}\pi^{-}$	5.7	2.3
$\frac{U_{1/2}[D^{0}\pi^{+}]}{U_{1/2}[D^{0}\pi^{+}]}$	2.4	0.0	$J/\psi D^{*+}{}_{D^+\pi^0}K^-$	2.2	0.9
$J/\psi D^0 K^- \pi^+$ vp	0.9		$J/\psi D^{*+}{}_{D^0\pi^+}K^-$	6.1	2.4
$J/\psi D$ R πNR	3.1	1.2	$J/\psi D^{*0}{}_{D^0\pi^0}K^-\pi^+$	1.5	
$\overline{P}^0 \dots K^- \pi^+$	4.7	1.2	$J/\psi D^{*0}{}_{D^0\gamma}K^-\pi^+$	0.8	
$\frac{D}{D^0} \frac{J/\psi K \pi K}{K^- \pi^+}$	4.7		sum	2.3	0.9
$\overline{D} D^{+}\pi^{-} \overline{K} \pi^{+}$ $\overline{D} D^{0} V^{-}\pi^{+}$	2.4		channels with B meson	partially reconst	tructed in SL decay mode
$\overline{D}^{0} D^{0} \pi^{+} \pi^{-} \Lambda^{-} \pi^{+}$	2.4		$\overline{B}{}^{0}{}_{D^{+}\mu^{-}\nu}K^{-}\pi^{+}$	96	38
$B^{\circ}[D^{0}\pi^{+}]_{D^{*+}}\pi^{-}K^{-}\pi^{+}$	5.1		$\overline{B}{}^0{}_{D^0\pi^+\mu^-\nu}K^-\pi^+$	92	37
$B^{o}{}_{D^{+}3\pi}K^{-}\pi^{+}$	6.4		$B^{-}{}_{D^{0}\mu^{-}\nu}K^{-}\pi^{+}\pi^{+}$	94	38
$B^{0}{}_{D^{0}4\pi}K^{-}\pi^{+}$	3.3	17.27	$\overline{B}{}^{0}{}_{D^{+}\mu^{-}\nu}K^{-}\pi^{+}\pi^{+}\pi^{-}$	31	12
sum	32.9	13.2	$\overline{B}{}^{0}{}_{D^{0}\pi^{+}\mu^{-}\nu}K^{-}\pi^{+}\pi^{+}\pi^{-}$	30	12
$B^-{}_{J/\psi K}K^-\pi^+\pi^+$	6.2		sum		137
$B^{J/\psi K\pi\pi}K^-\pi^+\pi^+$	1.2		channels with T_{bc}^0 pa	rtially reconstruct	cted in SL decay mode
$B^{-}{}_{D^{0}\pi^{-}}K^{-}\pi^{+}\pi^{+}$	18.9		$D^0 D^+ \mu^- \nu$	56	22 (15-32)
$B^{-}{}_{D^{0}3\pi}K^{-}\pi^{+}\pi^{+}$	5.6		$D^{*0}{}_{D^0\pi^0}D^+\mu^-\nu$	81	32(22-45)
$B^{-}{}_{D^{+}\pi^{-}\pi^{-}}K^{-}\pi^{+}\pi^{+}$	1.7		$D^{*0}{}_{D^0\gamma}D^+\mu^-\nu$	44	18 (11-25)
sum	33.6	13.4	$D^0[D^0\pi^+]_{D^{*+}}\mu^- u$	43	17 (11-26)
$\overline{B}{}^{0}{}_{J/\psi K\pi}K^{-}\pi^{+}\pi^{+}\pi^{-}$	1.5		$D^0 D^{*+}{}_{D^0 \pi^+} \mu^- u$	108	43 (28-65)
$\bar{B}{}^{0}{}_{D^{+}\pi}K^{-}\pi^{+}\pi^{+}\pi^{-}$	3.4		$D^0 D^{*+}{}_{D^+\pi^0} \mu^- u$	38	15 (10-22)
$\overline{B}{}^{0}{}_{D^{0}\pi^{+}\pi^{-}}K^{-}\pi^{+}\pi^{+}\pi^{-}$	1.8		sum		150 (95-215)
sum	6.7	2.7	$\overline{B}{}^{0}{}_{J/\psi K\pi}K^{-}\mu^{+}\nu$	3.5	1.4 (0.7-2.5)
$D^0 K^- \pi^+$	68	27(1-60)	$\overline{B}{}^{0}{}_{D^+\pi^-}K^-\mu^+ u$	8.1	3.2(1.5-5)
D^+K^-	134	54(2-125)	$\overline{B}{}^{0}{}_{all}K^{-}\mu^{+}\nu$	24	9.5 (5-15)
$D^0\pi^+\pi^-$	2.5	1.0(0.3-2.0)	$B^{J/\psi K}K^-\pi^+\mu^+\nu$	2.9	1.2 (0.5-2)
$D^+\pi^-$	4.9	2.0(0.5-4.0)	$B^{-}{}_{D^{0}\pi^{-}}K^{-}\pi^{+}\mu^{+}\nu$	8.8	3.5(1.5-6)
sum		84	$B^-{}_{all}K^-\pi^+\mu^+\nu$	16	6.5(2.5-11)

Sensitivity to Ξ_{bc}

 $\sigma(pp \rightarrow T_{bc} + X) \sim (20 \pm 9) \text{ nb in } p_{\tau} > 2 \text{ GeV},$ $\sigma(pp \rightarrow B_{c} + X) \sim (0.2 - 1.0) \mu b,$ $\sigma(pp \rightarrow \Xi_{cc} + X) \sim (0.25 - 1.3) \mu b \text{ in } p_{\tau} > 4 \text{ GeV},$ $\rightarrow \sigma(pp \rightarrow \Xi_{bc} + X) \sim 100 \text{ nb in } p_{\tau} > 4 \text{ GeV}?$

[Zhang et al]: $\sigma(pp \rightarrow \Xi_{cc} + X) \sim 92nb$ for $p_T > 4$ GeV $\sigma(pp \rightarrow \Xi_{bc} + X) \sim 37nb$ for $p_T > 4$ GeV

Table 11: Estimation of $\varepsilon_{tot} \times BR$ for various Ξ_{bc} decay modes for LHCb and expected yields with integrated luminosity of 8 fb⁻¹ (Run 1&2) and 20 fb⁻¹ (Run 3) and Ξ_{bc} cross-section of 100 nb in LHCb acceptance at 13/14 TeV.

				Expecte	d yield
decay channel	$\varepsilon_{tot} \ [10^{-3}]$	${\cal B}$ [10 ⁻⁶]	$\varepsilon_{tot} \times \mathcal{B} \left[10^{-9} \right]$	Run 1&2	Run 3
fully reconstructed channels					
$J/\psi \Lambda_c^+$	4.8	0.02 ± 0.01	0.1	0.07(0-0.2)	0.2(0.1-0.3)
$J/\psi \Xi_c$	4.8	0.04 ± 0.02	0.2	$0.1 \ (0.05-0.2)$	0.4(0.2-0.6)
$\Lambda_c^+\pi^-$	4.0	0.21 ± 0.14	0.8	0.5(0.2-1)	3(1.5-6)
$\Xi_c \pi^-$	4.0	0.56 ± 0.50	2.2	1.4(0.1-5)	9(0.5-25)
$D^0 p K^-$	3.2	3.6 ± 3.3	11	7(1-15)	44 (3-80)
$\Lambda^0_{bJ/\psi pK} K^- \pi^+$	2.4	0.27 ± 0.15	0.65	0.4(0.2-1)	1.3(0.5-3)
$\Lambda^0_{b\Lambda^+_c\pi^-}K^-\pi^+$	0.8	4.4 ± 2.3	3.5	2(1-3)	14(7-30)
$B^0_{J/\psi K\pi} p K^- \pi^+$	0.95	1.0 ± 0.5	0.9	0.6(0.3-1)	1.8(1-3)
$B^{0}{}_{D^{+}\pi^{-}}pK^{-}\pi^{+}$	0.32	3.4 ± 1.7	1.1	0.7(0.3-1)	4.5(2-7)
$\Lambda_c^+ D^0 \pi^-$	1.0	0.8 ± 0.6	0.8	0.5(0.1-1)	3.2(0.5-6)

Simulation

Only few decay descriptors with many modes combined:

- weakly-decaying (long-lived)
- strongly-decaying (short-lived)
- (additional) \overline{B}^*D^* molecule decaying to $(\overline{B}^0\gamma)(D\pi^0/\gamma)$

via off-shell B*/D*

Parameters fixed

- Long-lived:
 - $-m(T_{bc}) = m(B^0)+m(D^0) 10MeV = 7134.5 \text{ MeV}$ (expected range [-25;0] MeV)
 - $-\tau(T_{bc}) = 300 \text{ ps}$ (expected range [230;310] ps)
- Short-lived:
 - $-m(T_{bc}) = m(B^{0})+m(D^{0}) + 2MeV = 7146.5 MeV$
 - Γ(T_{bc}) = 5 MeV

Other doubly-heavy states, [bbud]

The T_{cc} below DD* threshold supports
 predictions for long-lived T_{bb} [bb][ud]

→ expect yields of only ~10⁻⁴ in Run1&2 or ~10⁻²-10⁻¹ in HL-LHC

The narrowest one - T_{cc} [ccud]

2021: signal in D⁰D⁰π⁺ just below D⁰D^{*+} threshold

T_{cc}**.** Summary of Results

- A narrow peak in $D^0D^0\pi^+$ below D^0D^{*+} threshold is observed with S>20 σ
- Naive BW parameters:

$$\begin{split} \delta m_{\rm BW} &= -273 \pm 61 \pm 5^{+11}_{-14} \, \text{keV}/c^2 \,, \\ \Gamma_{\rm BW} &= 410 \pm 165 \pm 43^{+18}_{-38} \, \text{keV} \,, \end{split}$$

• Consistent with [ccud] isoscalar tetraquark T_{cc}^+ with $J^P=1^+$ for which

$$\delta' m_0 = -359 \pm 40^{+9}_{-6} \, \text{keV}/c^2$$

is determined using dedicated model

- A lower limit is set on $T_{cc}^+ \rightarrow DD^*$ coupling: |g| > 5.1 (4.3) GeV at 90 (95) % CL
- Threshold structures observed in D⁰D⁰ and D⁰D⁺ are found to be consistent with $T_{cc}^{+} \rightarrow D^0 D^{0/+} \pi^{+/0} / \gamma$ decays via off-shell D* mesons
- Matching to low-energy DD* scattering amplitude we get
- Pole position:

$$\delta' m_{\text{pole}} = -360 \pm 40^{+4}_{-0} \text{ keV}/c^2,$$

$$\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV},$$

Measured mass, notable matches

The measured mass difference

 $\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$

is consistent with some of predictions.

Few notable matches for δm predictions:

 [-1,+13] MeV Semay, SIlvestre-Brac, 1994 (NR quark-quark potential model) false prediction (1993) for spin-0&1 ccqq states with masses ~3300-3400 MeV

- [-2.7,-0.6] MeV Janc, Rosina, 2003 (NR quark-quark potential model)
 -0.6 MeV corresponds to Bhaduri potential
- [-42.1;+0.3] or [-18;+1] MeV (OME exchange in DD* molecula)

Li, Sun, Liu, Zhu, 2012

Liu, Wu, Valderrama, Xie, Geng, 2019

- 1±12 MeV Karliner, Rosner, 2017
 (phenomenology model for compact tetraquark)
- -23±11 MeV Junnarkar, Mathur, Padmanath, 2018 (Lattice QCD)

	J. Carlson <i>et al.</i>	198
	B. Silvestre-Brac and C. Semay	199
	C. Semay and B. Silvestre-Brac	199
	M. A. Moinester	199
	S. Pepin <i>et al.</i>	199
	B. A. Gelman and S. Nussinov	200
	J. Vijande <i>et al.</i>	200
	D. Janc and M. Rosina	200
I.	F. Navarra <i>et al.</i>	200
	J. Vijande <i>et al.</i>	200
	D. Ebert <i>et al.</i>	200
	S. H. Lee and S. Yasui	200
	Y. Yang <i>et al.</i>	200
	N. Li <i>et al.</i>	201
	GQ. Feng <i>et al.</i>	201
	SQ. Luo <i>et al</i> .	201
	M. Karliner and J. Rosner	201
	E. J. Eichten and C. Quigg	201
	Z. G. Wang	201
	W. Park <i>et al.</i>	201
	P. Junnarkar <i>et al.</i>	201
	C. Deng <i>et al.</i>	201
	MZ. Liu <i>et al.</i>	201
	L. Maiani <i>et al.</i>	201
	G. Yang <i>et al.</i>	201
	Y. Tan <i>et al.</i>	202
	QF. Lü <i>et al.</i>	202
	E. Braaten <i>et al.</i>	202
	D. Gao <i>et al.</i>	202
	JB. Cheng <i>et al.</i>	202
	S. Noh <i>et al.</i>	202
	R. N. Faustov <i>et al.</i>	202
)	[see Refs_here	1

Notable match 1

The measured mass difference

 $\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$

Phenomenology model for compact tetraquark [cc]-[ud]

1±12 MeV

- using measured \equiv_{cc} mass to calibrate cc binding ($\delta m = 7 \pm 12 \text{ MeV} \rightarrow 1 \pm 12 \text{ MeV}$)

Karliner, Rosner, 2017

Contribution	Value (MeV)
$2m_c^b$	3421.0
$2m_a^b$	726.0
$a_{cc}/(m_{c}^{b})^{2}$	14.2
$-3a/(m_{a}^{b})^{2}$	-150.0
cc binding	-129.0
Total	3882.2 ± 12

Notable match 2

The measured mass difference

 $\delta m_{\rm U} = -359 \pm 40^{+9}_{-6} \, {\rm keV}/c^2$

NR quark-quark potential model
[-2.7,-0.6] MeV

with Bhaduri potential

 gives insight into wave function: spatial & color configuration

 → dominated by DD* component
 Janc, Rosina, 2003

Would love to see a refined calculation