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Abstract

We follow our recent review to be published in Physics Reports
arXiv:2212.07793 [16], on tetraquarks and pentaquarks, on the different
direct and indirect approaches that lattice QCD has been employing. We
now focus in the tetraquarks with heavy quarks, and in particular in the Tbc .



Introduction: many exotics with some heavy quarks
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Figure: New hadrons discovered at the LHC only, most of them at LHCb, including baryons,
tetraquarks and pentaquarks, plotted as mass versus preprint submission date [56, 75].

▶ Using the bag model, Jaffe proposed tetraquarks in 1977 [69, 70].
▶ Richard and colleagues proposed heavy-light tetraquarks in 1981 [3, 12, 116, 57].
▶ Since 2008, forty different experiments observed multiquarks.



state qnumber δmass width decay mode significance experiment / lattice

Tcc(3874) udc̄c̄ ? −360 ± 44 KeV 48 ± 16 KeV virtual D0D∗+ 15.5 ± 6.5σ experimental LHCb [1, 2]
udc̄c̄ 1+ −23 ± 11 MeV 0 - - dynamical lattice QCD [71]

vBS ∼ −9 MeV 0 - - scattering lattice QCD [95]

Tccs usc̄c̄ 1+ −8 ± 8 MeV 0 - - dynamical lattice QCD [71]

X0, X1, Tcs udc̄s̄ 1+, 0+ ∼ 0 - - - heavy quark lattice QCD [63]

Tbs udb̄s̄ 1+, 0+ ∼ 0 - - - heavy quark lattice QCD [63]

Tbc udb̄c̄ 1+, 0+ ∼ 0 - - - heavy quark lattice QCD [71]
−38 ± 23MeV 0 - - heavy quark lattice QCD [55]

∼ 0 - - - heavy quark lattice QCD [63]
∼ −40 ± 50 MeV 0 - - heavy quark lattice QCD [111, 98, 87]

Tbcs usb̄c̄ 1+, 0+ ∼ 0 - - - heavy quark lattice QCD [63]

Tbb udb̄b̄ 1+ −90 ± 43 MeV 0 - - static lattice QCD [26, 22, 23, 18, 24]
−59 ± 38 MeV 0 - - 2 × 2 static lattice QCD [25]
−189 ± 13 MeV 0 - - heavy quark lattice QCD [54]
∼ −113 MeV 0 - - heavy quark lattice QCD [55, 63]

−143 ± 34 MeV 0 - - heavy quark lattice QCD [71]
−128 ± 34 MeV 0 - - heavy quark lattice QCD [79]
∼ −120 MeV 0 - - heavy quark lattice QCD [46]

−112.0 ± 13.2 MeV 0 - - heavy quark lattice QCD [65, 64]
−154.8 ± 37.2 MeV 0 - - scattering lattice QCD [7]
−83.0 ± 30.2 MeV 0 - - scattering lattice QCD [7]
−103 ± 8 MeV 0 - - scattering lattice QCD [114, 98]

udb̄b̄ 0+ −50.0 ± 5.1 MeV 0 - - static lattice QCD [33]
−5 ± 18 MeV 0 - - heavy quark lattice QCD [71]

Tbbs usb̄b̄, dsb̄b̄ 1+ −98 ± 10 MeV 0 - - heavy quark lattice QCD [54]
∼ −36 MeV 0 - - heavy quark lattice QCD [55, 63]

−87 ± 32 MeV 0 - - heavy quark lattice QCD [71]
∼ −80 MeV 0 - - heavy quark lattice QCD [99]

−46.4 ± 12.3 MeV 0 - - heavy quark lattice QCD [65, 64]
−86 ± 32 MeV 0 - - scattering lattice QCD [111, 98, 87]

Tbbc ucb̄b̄ 1+ −6 ± 11 MeV 0 - - heavy quark lattice QCD [71]
∼ 0 - - - heavy quark lattice QCD [63]

Tbbcs scb̄b̄ 1+ −8 ± 3 MeV 0 - - heavy quark lattice QCD [71]
∼ 0 - - - heavy quark lattice QCD [63]

Tbbbb = X bbb̄b̄ ? ∼ 0 - - - heavy quark lattice QCD [66]

Table: The tetraquark boundstates, or very narrow resonances [16], showing the experimental
observations (only the Tcc ) and the lattice QCD predictions as well and the heavy quark approach.



Figure: Three mechanisms for tetraquarks resonances to exist-I : molecular systems, nucleon-like

▶ The molecular tetraquarks, with an interaction similar to the nuclear physics N-N
potentials are expected to be close to a threshold. They may be exotic.



Figure: Three mechanisms for tetraquarks resonances to exist-II: s-pole, sigma meson-like.

▶ The non-perturbative sigma-like Mandelstam s pole tetraquarks, occur as
non-perturbative scattering poles of the s-matrix, similar to the σ meson.
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Figure: Three mechanisms for tetraquarks resonances to exist-III : new diquark-antidiquark
systems.

▶ The diquark tetraquarks may form exotic multiplets, they are not linked to
thresholds, this is a novel mechanism never found previously in hadrons.



Lattice QCD is a discretization of QCD,
requiring,
▶ ensembles of many

configurations,
▶ a large volume V,
▶ a small lattice spacing a
▶ and a physical pion mass mπ .

It uses the Euclidean time evolution of
correlations to compute the energies of
observables.

For instance, denoting |O1(t)⟩ the physical quantum state corresponding to the
operator O1 at time (t), it can be decomposed in eigenvectors |vi ⟩ of the hamiltonian,
and the matrix element between two operators at different times is

⟨O2(t)|O1(0)⟩ =
∑

i

c2
∗
i c1 i e−ωi t , (1)

clearly for a time long enough the groundstate dominates this matrix element.



Static potentials and colour field densities
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Figure: The tetraquark (4Q) Wilson loop for the
calculation of the 4Q potential V4Q [91].

Figure: Lagrangian density 3D plot for a
tetraquark [39], showing a diquark-antidiquark
flux tube.

▶ The first lattice QCD computations for tetraquarks used static quarks [5, 92, 91].
▶ The potential V4Q is fitted by a Coulomb plus a four-body double-Y potentials,

V4Q = −α4Q{(
1

r12
+

1
r34

) +
1
2
(

1
r13

+
1

r14
+

1
r23

+
1

r24
)}+ σ4QLmin + C4Q (2)

▶ The colour Lagrangian square field densities [39, 40] show two Steiner junctions.



String flip-flop potentials with static quarks
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Figure: Triple string flip-flop potential
[14].

▶ We can have three different, non-orthogonal,
groundstate colour singlets
▶ two different 1 1 and one 3̄ 3,
▶ the orthogonal colour singlet to 3̄ 3 is 6 6̄
▶ the orthogonal colour singlet to 1 1 is 8 8.

▶ The string flip-flop was observed in the
tetraquark potentials [91] and in the colour
field densities [37, 15].

Figure: Flip-flop of the flux tube in the colour field densities for the QQQ̄Q̄ system [37].

▶ However, the spin-dependence of the flip-flop potential remains to be computed.



Potentials with static heavy quarks for the TQQ family
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Figure: The lattice QCD potentials fitted in Ref. [112, 113, 26], left scalar-isoscalar and right
vector-isovector.

▶ The family of Tbb tetraquarks has two light quarks and two heavy antiquarks.
▶ Lattice QCD used static heavy quarks and dynamical light quarks, quenched

[89, 88, 51, 50] or fully dynamical [112, 113, 9, 33, 26].
▶ The operators create two static-light mesons [25]

(CΓ)AB

(
Q̄C(r1)ψ

(1)
A (r1)

)(
Q̄C(r2)ψ

(2)
B (r2)

)
, (3)

used the chiral limit [26, 22, 23, 25, 18, 24] and light quarks u, d , s and c [22].



Figure: The picture of perturbative one-gluon exchange at
short distances and of meson wavefunction screening at large
distances, shown in Ref. [26].

channel α d/a p χ2/dof

scalar isosinglet 0.293(33) 4.51(54) 2.74(1.20) 0.35

vector isotriplet 0.201(77) 2.48(69) 2.0 (fixed) 0.06

Table: χ2 minimizing fit of the ansatz (4) to the lattice static
antiquark-antiquark potential; lattice spacing a ≈ 0.079 fm

Our best ansatz for a fit is,

V (r) = −
α

r
exp

(
−
(

r
d

)p)
,

(4)
We expect:
▶ at short distances a

Coulomb potential
between the two
heavy antiquarks in
a triplet colour state
3, s-wave, spin 1;

▶ at large distances
we expect a
screening typical of
the static-light
wavefunction.

▶ We provide dynamics (kinetic energy) to the heavy quarks in the Schrödinger
equation with the Born-Oppenheimer approximation [29].

▶ A boundstate with Er = −90 ± 43 MeV (−60 ± 45 including heavy spins) , and a
resonance are predicted . The quantum numbers for the Tbb are I(JP) = 0(1+).

▶ Other tetraquarks such as lsb̄b̄, lcb̄b̄, scb̄b̄, ll c̄b̄, ll c̄c̄ are not predicted to bind.



Diquark-antidiquark and meson-meson in a bounstate

Figure: The squared overlap αjk for for several
fixed r distances as a function of t for ensemble
B40.24 of Ref. [24]. The normalized trial states
are j = BB, (1 + γ0)γ5, k = Dd, (1 + γ0)γ5.

Figure: Comparing the real tetraquark Dd
versus the molecular BB in Ref. [24]. Fitted
normalized absolute squares of the coefficients
w̄BB and w̄Dd as functions of the distance r .

▶ Ref. [24] used two b̄ quarks frozen distance r for the Tbb , a tetraquark b̄b̄ud ,

▶ and compared two frequently discussed competing structures
▶ the real tetraquark Dd ,
▶ versus the molecular BB.

▶ Solving a generalized eigenvalue problem (GEVP) [27], they estimated the
meson to diquark-antidiquark ratio of this tetraquark is around 60% to 40%.



String breaking potentials for quarkonium, crypto-exotics
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with the potential
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Figure: The matrix
elements of the Q̄Q and
M̄M potential [17, 21].
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Figure: The composition
of the bottomonium
state Υ(10753) [21].

▶ String breaking needs both two quark operators and four quark operators.
▶ The coupling potentials, Figs. 13, 15, between two static quark-antiquark and two

static-light mesons have been computed with light u, d [11] or u, d , s [34] quarks.

V0(r) =

(
VQ̄Q(r) Vmix(r)
Vmix(r) VM̄M,∥(r)

)
(5)

▶ The poles of the bottomonium resonances [17, 21, 20] are found with a
Born-Oppenheimer approach and scattering theory [38], see Fig. 14.

▶ Two non-perturbative dynamical extra states are found, in the s-wave and d-wave
spectra [20, 19], both compatible with the recent Υ(10753) observed at BELLE.



Potentials with static heavy quarks QQ̄ for Zb family
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Figure: Eigen-energies of b̄bd̄u system, computed in Ref. [102], for various static quarks b and b̄
separations. The eigenstate dominated by BB̄∗ (red circles) has energy well below mB + mB∗ .

▶ With the Zb flavour ud̄bb̄, we have two meson-meson channels, ub̄ = B+(∗) and

d̄b = B̄0(∗) or ud̄ and bb̄, say π+ and a quarkonium meson such as an Υ.

▶ A boundstate is suggested in the B+(∗) − B̄0(∗) channel
[96, 97, 103, 102, 106, 4].

▶ A difficulty resides in identifying these non-orthogonal, open coupled channels.



HAL QCD non-static potentials

Figure: HAL QCD Coupled channel potentials [6] using
dynamical light quarks and non-relativistic heavy quarks.

The HAL QCD method
computes potentials with
dynamical quarks [67, 8, 68],
extracting them from the
Schrödinger wavefunction or
the Nambu-Bethe-Salpeter
amplitude,

V (r) =
∆ϕ(r)
2mϕ(r)

+ E . (6)

using operators of two
hadrons, composed of quarks.

▶ Ref. [6] studied theTbb ,see Fig. 17, with a 2 × 2 time dependent coupled channel
of a BB∗ pair and a B∗B∗ pair .

▶ There is evidence for OGEP attraction in the BB∗, as with static quarks [25].
▶ Moreover, the HAL QCD shows a new evidence for OPEP attraction in the B∗B∗.



Search for tetraquark resonances high in the spectrum
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▶ Zc was the first exotic tetraquark discovered, confirmed in several experiments.
▶ The first lattice QCD calculations [105, 104, 59, 44] used the technique of

comparing the spectrum just with several meson-meson operators,

Oψ(0)π(0)
1 = c̄γi c(0) d̄γ5u(0) (7)

and the spectrum after adding diquark-antidiquark operators.

O4q
1 ∝ ϵabcϵab′c′ (c̄bCγ5d̄c cb′γi Cuc′ − c̄bCγi d̄c cb′γ5Cuc′ ) .

▶ This technique succeeded in identifying the X(3872) state in the spectrum [94],
but no evidence for the Zc was found in the spectrum, see for instance Fig. 18.



Boundstate search with non-relativistic bottom quarks
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Figure: Results of Ref. [71] for the Tcc and Tccs , udc̄c̄ and usc̄c̄ doubly charm tetraquark states.
Left panel: chiral extrapolation for several pion masses at a = 0.1207 fm for each of the states.
Right panel: Continuum extrapolation at the chiral extrapolation to the physical pion mass.

▶ The Tbb fully exotic tetraquark has been studied [55, 79, 71], using the NRQCD
lattice action [109, 78, 86, 10, 32, 47, 80, 81] for the bottom quark propagators.

▶ All the lattice QCD computations agree on bound Tbb and Tbbs tetraquarks.
▶ There is still some tension in Tcc , Tccs and Tbbc only seen by Ref. [71], see Fig.

19 where Ref. [71] checks the physical mπ and the small a limit.
▶ There is a null evidence for a full bottom bbb̄b̄ tetraquark boundstate in Ref. [66].



Scattering study with the Lüscher method for phase shifts
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▶ The Lüscher technique extracts phase shifts from the momenta and energy of
open channels [84, 85, 84, 83, 82, 31, 93].

▶ In a single channel with two particles, the effective range approximation [45, 90],

k2l+1 cot δl (k) =
−1
al

+
rl

2
k2 + o(k4) (8)

with scattering length al and effective range rl , a pole implies cot δl + i = 0.
▶ The Tbb boundstate was obtained [6, 111] in the scattering of B - B∗ mesons.
▶ The Tcc was studied in the channel DD∗ [95]. However only a virtual boundstate

pole was found, with Im(k) < 0, for a boundstate we should have Im(k) > 0.



Tbc case study with potentials
▶ In our most detailed potential study arXiv:1505.00613 [22] we only studied

systems with two equal heavy quarks. Now we are staring to study other possible
flavours such as Tbc , Tbbs and the Tcc observed in LHCb.

▶ The potentials from lattice QCD can be fitted with 2 parameters, Coulomb
potential strength α and screening length d . µ is the reduced mass.
Approximately,

binding if : µαd > 0.6 (9)
With Tbb , considering mb ∼ 5 GeV we get µbbαd ∼ 1.9 and binding: the binding
energy is δmass = −90 ± 43 MeV.

▶ In the quark model, we have mc ∼ mb/3. This implies
µbc ∼ µbb/2 ∼ 0.95: Tbc should be bound,
µcc ∼ µbb/3 ∼ 0.95: 0.63, may be bound and actually experimentally is.

▶ The non-relativistic approximation can be controlled by the binding energy and
we get approximately < p2/µ2 >∼ δmass ∗ µ/2 ∼ 0, 036, which is fine! This is
OK as well for the Tbc and Tcc if the binding energy is smaller

▶ The spin is also a next to leading term in a non-relativistic expansion. We can
include the spin splittings with the technique of arXiv:1612.02758 [25].
Notice the two quarks bb in the groundstate s-wave and colour triplet 3 must have
spin 1, thus Tbbhas JP = 1+, it couples to BB∗ and B∗B∗ Channels. But the two
quarks bc may have either spin 0 or spin 1.
Tbc1+ = 1

2 B∗D − 1
2 BD∗ + 1√

2
B∗ × D∗

Tbc0+ = 1
2 BD +

√
3

2 B∗ · D∗

thus Tbc0+ should have a smaller mass, but the BD threshould should even be
lower. We will know which binds more when we compute it.



Conclusion and outlook for tetraquarks with lattice QCD
Lattice best predictions are the boundstates of the T family, such as Tbb and Tbbs . Tbb
is a benchmark for the different lattice QCD studies and challenges future experiments.

Figure: The pole in the scattering amplitude related to Tcc in the complex energy plane: the lattice
result [95] (magenta) and the LHCb result (orange).

The Tcc , Tbc and are excellent case studies for future lattice QCD efforts.
▶ The extension of the Lüscher technique to several channels and to three particle

resonances is under development, [60, 61, 62], this improves the study of the Tcc .

▶ The Master field approach, uses a very large lattice is used. The One Pion
Exchange Potential should increase, and this is important for deuteron-like
molecules. Tcc is expected to have both a Dd-like attraction and a π exchange.

However, for the Zb, Zc . . . family, high in the spectrum, with many coupled decay
channels, new technical advances are still necessary to study them with lattice QCD.

We expect Tetraquarks, Pentaquarks and Hexaquarks will become a priority for the
lattice QCD community, with increased precision, new techniques, and computations to
directly address theoretical questions on the properties of tetraquarks, as in Fig. 23.
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Figure: Very preliminary results for B-B potentials by PB (U. Lisboa), L Müller and M. Wagner (U.
Frankfurt) and M Marinkovic (ETH Zürich) obtained with the open source package for lattice QCD
open Q*D developed by Prof. Marina Krstic Marinkovic (ETH Zürich) et al [36].
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