
Enhancing PODIO: Enabling Julia Code Generation
for HEP Data Models

Ananya Gupta
Indira Gandhi Delhi Technical University for Women

Mentors: Benedikt Hegner (CERN), Graeme A Stewart (CERN)

PODIO is a Python library designed for particle
physics data modeling.
It focuses on plain-old-data (POD) structures for
improved performance and simplicity.
PODIO offers high-level functionality for inter-object
relations and memory management.
It provides a Python interface which supports ROOT
and SIO persistency backends.
A YAML file describing the data model is provided to
the Python interface, which then generates C++
code, streamlining the data model creation process.

About PODIO

https://github.com/AIDASoft/podio
https://github.com/AIDASoft/podio

Primary Objective: Add Julia language support in the
PODIO library.
Project Goal: Preserve PODIO's performance
optimizations and expand its functionalities.
Project Focus: Incorporate Julia code generation in
the existing Python interface.
Project Outcome: Provide HEP researchers with the
option to generate Julia code for their data models
and utilize its capabilities.

About Project

High Performance: Julia provides computational speed on par
with C/C++, ensuring efficient data processing and analysis
for HEP researchers.
User-Friendly Syntax: Julia offers a Python-like syntax, making
it accessible and easy to use for HEP researchers, streamlining
their workflow.
Scientific Data Processing: Julia is purpose-built for scientific
data processing and offers a wealth of robust capabilities and
libraries useful for HEP researchers.

Why Julia?

Julia Language Support: Add Julia language support in the
PODIO library.
Preserve PODIO's Performance Optimizations: Ensure the
retention of PODIO's performance optimizations.
Leverage Feasibility from Prototype: Build upon the feasibility
demonstrated in the prototype developed during Google
Summer of Code 2022.
Julia Code Generation: Implement Julia code generation
seamlessly within the existing Python interface.
Project Result: Provide HEP researchers the option to generate
Julia code for their data models and utilize its capabilities for
enhanced data processing and analysis.

Project Goals

https://github.com/AIDASoft/podio/compare/master...julia
https://hepsoftwarefoundation.org/gsoc/blogs/2022/blog_PODIO_SoumilBaldota.html

Shortcomings in the Previous Prototype

“.jl” file and anonymous module
were generated for components and
datatypes that did not have a
namespace.
There were no default parameters
and thus user have to initialize empty
constructor definitions first, before
passing value to them.

Shortcomings in the Previous Prototype

The structs, constructors as well as the
collections all were returned in the
Main scope thus polluting it. A good
design choice in Julia would be to not
pollute the Main Scope.
The prototypic implementation had
way too many separate modules,
which unless is necessary should be
avoided.

Workaround 1
Creating a single module for each data type and component such that the module for data type consists of
struct, constructor and collection definitions and for component consists of struct and constructor definitions.

File: “<Component_name>.jl”
include(“<Other_Component_name>.jl”) #Members

module <component_name>
export <component_name>Struct # Struct
export <component_name> # Constructor

using ..<other_component_name> #sibling modules

mutable struct <component_name>Struct
 …
end

function <component_name>(
 … #default parameters
)
return <component_name>Struct(
 …
)
end
end

include(“<Component_name>.jl”) # Members
include(“<Other_Datatype_name>.jl”) # One to One, One
to Many Relations, Members

module <datatype_name>
export <datatype_name>Struct # Struct
export <datatype_name> # Constructor
export <datatype_name>Collection

using ..<component_name>
using ..<datatype_name> # sibling modules

mutable struct <datatype_name>Struct
 …
end
function <datatype_name>(
 … #default parameters
)
return <datatype_name>Struct(
 …
)
end
<datatype_name>Collection = Vector{
<datatype_name>Struct }
end

module <package_name>
include(“<Component_name>.jl”)
include(“<Datatype_name>.jl”)

using .<component_name>
export <component_name>

using .<datatype_name>
export <datatype_name>
export <datatype_name>Collection

end

File: “<Datatype_name>.jl”

File: “<package_name>.jl” # Parent Module

Issues in Workaround 1
This approach was a great workaround but it failed Cyclic Dependency tests. During Cyclic
Dependency tests the above design choice resulted in an infinite loop of file includes.

Workaround 2
In this workaround we reduced the number of modules to the number of namespaces the datamodel.yaml file has.
Constructor definitions for components and both constructor and collection definitions for data types were placed in
modules with names corresponding to their respective namespaces.

File: “<Component_name>Struct.jl”

include(“<Other_Component_name>Struct.jl”) # Members
mutable struct <component_name>Struct
 …
end

module <namespace1>
export <component_name>
export <datatype_name>
export <datatype_name>Collection

using ..namespace2
include(“<Component_name>Struct.jl”)
include(“<Datatype_name>Struct.jl”)

function <component_name>(
 … #default parameters
)
return <component_name>Struct(
 …
)
end
function <datatype_name>(
 … #default parameters
)
return <datatype_name>Struct(
 …
)
end
<datatype_name>Collection = Vector{
<datatype_name>Struct }
end

module <namespace2> # Code contd.
export <component_name>
export <datatype_name>
export <datatype_name>Collection

using ..namespace1
include(“<Component_name>Struct.jl”)
include(“<Datatype_name>Struct.jl”)

function <component_name>(
 … #default parameters
)
return <component_name>Struct(
 …
)
end
function <datatype_name>(
 … #default parameters
)
return <datatype_name>Struct(
 …
)
end
<datatype_name>Collection = Vector{
<datatype_name>Struct }
end

File: “<package_name>.jl” # Parent Module

File: “<Datatype_name>Struct.jl”
include(“<Component_name>Struct.jl”) # Members
include(“<Other_Datatype_name>Struct.jl”) # Members

mutable struct <datatype_name>Struct
 … # use of parametric types
end

Issues in Workaround 2
The issue with the above design choice is that module ‘namespace2’ is being
used within module ‘namespace1’, even though it's declared after module
‘namespace1’.
This results in an error in Julia, and it cannot be resolved because Julia does not
support forward declarations. Therefore, there is no solution or method to
achieve the above design choice without encountering errors.

Support for forward declarations is a long standing issue in the JuliaLang/julia.
Issue: https://github.com/JuliaLang/julia/issues/269
Thus we can’t use this workaround.

https://github.com/JuliaLang/julia/issues/269

Workaround 3 (Approved)
In this workaround, we considered consolidating the modules into a single module identified by the package
name. Our decision was to place constructor definitions for components and both constructor and collection
definitions for data types within this single module.

module <package_name>
export <component_name>
export <datatype_name>
export <datatype_name>Collection

include(“<Component_name>Struct.jl”)
include(“<Datatype_name>Struct.jl”)

function <component_name>(
 … #default parameters
)
return <component_name>Struct(
 …
)
end
function <datatype_name>(
 … #default parameters
)
return <datatype_name>Struct(
 …
)
end
<datatype_name>Collection = Vector{
<datatype_name>Struct }
end

File: “<package_name>.jl” # Parent Module

File: “<Component_name>Struct.jl”

include(“<Other_Component_name>Struct.jl”) # Members
mutable struct <component_name>Struct
 …
end

File: “<Datatype_name>Struct.jl”
include(“<Component_name>Struct.jl”) # Members
include(“<Other_Datatype_name>Struct.jl”) # Members

mutable struct <datatype_name>Struct
 … # use of parametric types
end

Design Choice Analysis: Workaround 3

Simplified Module Structure: This approach employs a single module, which eliminates
complexities in the code structure, making it more straightforward and manageable.
Overcoming Prototype Shortcomings: Workaround 3 effectively addresses and resolves all the
limitations found in the prototype, enhancing the overall robustness of the solution.
Potential for Julia Package: The generated code can be seamlessly transformed into a Julia
package, offering reusability and scalability.

Consequently, users are required to use unique names for data types and components, even across
different namespaces.

Advantages:

Limitations:
Namespace Constraint: All the constructors, and collection definitions for components and data types
are consolidated within a single module, regardless of their respective namespaces in the
datamodel.yaml file.

Project Milestones and Progress
Resolved the empty namespace issue by assigning the ' .jl' file and anonymous
module the ‘package_name’.
Added default parameters in constructor definitions with support for Abstract types.
Implemented a new design structure for Julia code based on workaround 3.
Fixed tests in the unit test suite, covering the Julia code generation of the example
data model.
Organized file includes in lexicographical order in struct definition files.
Created a pull request (PR) to merge the aforementioned changes into the PODIO
library. PR#473
Created a prototype Edm4hep Julia package based on workaround 3 for design and
code robustness testing.

https://github.com/AIDASoft/podio/pull/473
https://github.com/Ananya2003Gupta/Edm4hep.jl

Key Learnings from the Project

Julia
Julia in High Energy Physics (Julia HEP)
Unit Testing (Julia)
Advanced Git Concepts
CMake Build and Testing

Thank You

