

Nal Quenching factor measurement

Particle physics day 2023 - Jyväskylä

Outline

- Background: Direct detection & DAMA
- Setup
- Analysis
- Results

Background: Direct detection & DAMA

- Assume WIMPs have some interaction with ordinary matter
- Need (very) low background detectors
- Event rate above background is a dark matter signal
 - Modulation searches just takes all events and looks for a modulation
- DAMA: 13.7σ signal [1]

Earth

December

June

Sun

WIMP

wind

Background: Direct detection & DAMA

- DAMA is located in Gran Sasso, Italy
- Ultrapure Nal crystals w. Tl dopant
- See a significant statistical excess in nuclear recoils
- Only see scintillation light
- Through light yield and Quenching factor
 we get the recoil energy

Exclusion plot of WIMP type dark matter [3]

Background

- Different QF results [2]

Setup - Facility

- Measurement done at Triangle Universities Nuclear Laboratory (TUNL)
- 5 Nal crystals with varying levels of Thallium dopant
- Proton accelerator -> neutrons via ⁷Li(p,n)⁷Be reaction
 - Mean E ≃ 1.28MeV
- Nal w. PMT placed in front of collimator
- 15+1 Backing detectors (Liquid scintillators coupled to PMTs)
 - Angles from 7 to 40 degrees (E_{Na} ≈ 0.8 26keV) and 0-degree detector
- Trigger scheme:
 - If BD triggers -> save cached Nal pulse

Setup - Simulations

- Simulate the recoil spectra in Geant4
- 100 Million events
- Obtain Recoil spectra for each scattering angle
- Beam profile from previous simulations
 - Working on improvements with data from 0-degree backing detectors

Analysis

Part 1:

- Calibrate using different gamma sources
- Separate out neutron recoils from gamma events
- Output -> signal and background histograms

Analysis

Part 2:

- Find the nuclear recoil peak
- Fit Gaussian + Background to signal histogram
 - Monte Carlo minimizing each potential point
 - Background is a function fit to histogram
 - Gaussian width is fixed from calibration resolution
- Compare to simulations

Results & Thank you

- Energy dependent QFs
 - In contrast to DAMA's constant

Quenching Factor

0.15

QF for crystal 1

BD2

BD12

BD11

ĕ BD13

BD0

ĕ BD14

References

- [1] R Bernabei et al 2023 J. Phys.: Conf. Ser. 2586 012096
- [2] D. Cintas et al 2021 J. Phys.: Conf. Ser. 2156 012065
- [3] S. Hamdan, arXiv:2108.07752

Backup/Extra slides

Energy integration

- Tried two methods:
 - Integration
 - Adopted Charge Estimate
- ACE = sum everything above threshold
- ACE has better low energy resolution

Background

- "inverse" the cut criteria from neutron events
- Calibrate with same source and function as signal
- Save histogram
- Spectrum fitter fits function:

-
$$A^*e^{-b^*x} + C^*x^d$$

- Function is then used in peak finding

Calibration

- Sources (Am241, Ba133, Cs137) placed on top of crystal
- Record PMT with no trigger scheme
- Fit Peak with Gaussian + Linear function
 - Extract Gaussian mean and std. dev.

Resolution function

- Get the std. dev of the Ba133 calibration peaks
- Plot as a function of mean energy
- Add simulation "resolution" in quadrature

