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Introduction – Matter-antimatter asymmetry

Observations consistently show that there are more particles than
antiparticles:1

ηB =
nB

nγ
≈ 6× 10−10 .

Conditions for baryon asymmetry:2

Baryon-number violation.
C and CP violation.
Deviation from equilibrium.

Direct evidence of new physics (?).

1PLANCK Collaboration, Astron. Astrophys. 641 (2020) A6.
2Sakharov’s conditions (A.D. Sakharov, JETP Lett. 5 (1967) 24).
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Introduction – Leptogenesis

A popular scenario of baryon asymmerty production is baryogenesis
through leptogenesis:

CP and L violation from new physics.
New particles fall out of equilibrium.
Baryon asymmetry generated when via (B+L)-violating
(non-perturbative) sphaleron interactions.
Baryon asymmetry freezes at T ≈ 130 GeV.

Violation of L-number terms are naturally connected to neutrino
masses.
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Model – Yukawa structure

Tri-resonant model:

−LνR = hν
ijLiΦ̃νR,j +

1

2
νCR,i (mM )ij νR,j +H.c. ,

hν = hν
0 + δhν .

hν
0 =



a aω aω2

b b ω b ω2

c c ω c ω2


 ,

with ω = exp

(
2πi

3

)
; i.e. generator of Z3.3

Reason: Tree-level and 1-loop neutrino masses vanish at leading
order of hν

0 . Dominant contribution comes from δhν .

3 Same results are obtained if ω is a generator of Z6.
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Model – Resonant leptogenesis

CP asymmetry, is enhanced if two right-handed neutrinos obey

|mNα
−mNβ

| ∼ Γβ/2 .

Tri-resonant case produces even larger asymmetry:
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Leptogenesis and TRL – Initial conditions
The transport equations are pretty attractive:
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The initial conditions do not really matter!
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Leptogenesis and TRL – Varying relativistic degrees of
freedom

Changing d/dt → d/dT introduces extra terms proportional to
dheff/dT (ignored in the literature).
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Leptogenesis and TRL – Results

Things change significantly for mN1
≲ 100 GeV:

Possible probe: µ → e transitions within Titanium.4

4The PRISM/PRIME Project, Nuclear Physics B - Proceedings Supplements 218
(2011), no. 1 44–49.
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Summing up

What to take home:

Tri-resonant leptogenesis works.

Masses below the TeV scale.

Varying degrees of freedon must be included.

As for the future:
Multi-resonant leptogenesis?

Study known models including varying heff , to find how much
they change.

Extensions of TRL might introduce additional CP violations or
mixing, making the parameter space better?
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Thank you!
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