Tri-resonant Leptogenesis

Dimitrios Karamitros

University of Jyväskylä

Particle Physics Day 2023 Jyväskylä 12/10/2023

Outline

- Introduction
 - Matter-antimatter asymmetry
 - Leptogenesis
- Model
 - Yukawa structure
 - Resonant leptogenesis
- 3 Leptogenesis and TRL
 - Initial conditions
 - Varying relativistic degrees of freedom
 - Results
- Summing up

Introduction

- Introduction
 - Matter-antimatter asymmetry
 - Leptogenesis
- Model
 - Yukawa structure
 - Resonant leptogenesis
- Leptogenesis and TRL
 - Initial conditions
 - Varying relativistic degrees of freedom
 - Results
- 4 Summing up

Introduction – Matter-antimatter asymmetry

Observations consistently show that there are more particles than antiparticles:¹

$$\eta_B = \frac{n_B}{n_\gamma} \approx 6 \times 10^{-10} \ .$$

- 1

¹PLANCK Collaboration, Astron. Astrophys. 641 (2020) A6.

²Sakharov's conditions (A.D. Sakharov, JETP Lett. 5 (1967) 24).

Introduction – Matter-antimatter asymmetry

Observations consistently show that there are more particles than antiparticles:¹

$$\eta_B = \frac{n_B}{n_\gamma} \approx 6 \times 10^{-10} \ .$$

Conditions for baryon asymmetry:2

- Baryon-number violation.
- C and CP violation.
- Deviation from equilibrium.

1/8

¹PLANCK Collaboration, Astron. Astrophys. 641 (2020) A6.

²Sakharov's conditions (A.D. Sakharov, JETP Lett. 5 (1967) 24).

Introduction – Matter-antimatter asymmetry

Observations consistently show that there are more particles than antiparticles:¹

$$\eta_B = \frac{n_B}{n_\gamma} \approx 6 \times 10^{-10} \ .$$

Conditions for baryon asymmetry:2

- Baryon-number violation.
- C and CP violation.
- Deviation from equilibrium.

Direct evidence of new physics (?).

1/8

¹PLANCK Collaboration, Astron. Astrophys. 641 (2020) A6.

²Sakharov's conditions (A.D. Sakharov, JETP Lett. 5 (1967) 24).

Introduction – Leptogenesis

A popular scenario of baryon asymmetry production is *baryogenesis* through leptogenesis:

- CP and L violation from new physics.
- New particles fall out of equilibrium.
- Baryon asymmetry generated when via (B+L)-violating (non-perturbative) sphaleron interactions.
- Baryon asymmetry freezes at $T \approx 130 \text{ GeV}$.

Introduction – Leptogenesis

A popular scenario of baryon asymmetry production is *baryogenesis* through leptogenesis:

- CP and L violation from new physics.
- New particles fall out of equilibrium.
- Baryon asymmetry generated when via (B+L)-violating (non-perturbative) sphaleron interactions.
- Baryon asymmetry freezes at $T \approx 130 \text{ GeV}$.

Violation of L-number terms are naturally connected to neutrino masses.

Model

- Introduction
 - Matter-antimatter asymmetry
 - Leptogenesis
- 2 Model
 - Yukawa structure
 - Resonant leptogenesis
- Leptogenesis and TRL
 - Initial conditions
 - Varying relativistic degrees of freedom
 - Results
- 4 Summing up

Model - Yukawa structure

Tri-resonant model:

$$-\mathcal{L}^{
u_R} = oldsymbol{h}_{ij}^{
u} \overline{L}_i \tilde{\Phi}
u_{R,j} + rac{1}{2} \overline{
u}_{R,i}^{C} \left(oldsymbol{m}_M
ight)_{ij}
u_{R,j} + ext{H.c.} ,
onumber \ oldsymbol{h}^{
u} = oldsymbol{h}_{0}^{
u} + \delta oldsymbol{h}^{
u} .
onumber \ oldsymbol{h}_{0}^{
u} = egin{pmatrix} a & a & \omega & a & \omega^{2} \\ b & b & \omega & b & \omega^{2} \\ c & c & \omega & c & \omega^{2} \end{pmatrix} ,$$

with
$$\omega = exp\left(\frac{2\pi i}{3}\right)$$
; *i.e.* generator of \mathbb{Z}_3 .

3/8

³ Same results are obtained if ω is a generator of \mathbb{Z}_6 .

Model - Yukawa structure

Tri-resonant model:

$$-\mathcal{L}^{
u_R} = oldsymbol{h}_{ij}^
u \overline{L}_i \tilde{\Phi}
u_{R,j} + rac{1}{2} \overline{
u}_{R,i}^C \left(oldsymbol{m}_M
ight)_{ij}
u_{R,j} + ext{H.c.} \; , \ oldsymbol{h}^
u = oldsymbol{h}_0^
u + \delta oldsymbol{h}^
u \; . \ oldsymbol{h}_0^
u = egin{pmatrix} a & a & \omega & a & \omega^2 \\ b & b & \omega & b & \omega^2 \\ c & c & \omega & c & \omega^2 \end{pmatrix} \; ,$$

with
$$\omega = exp\left(\frac{2\pi i}{3}\right)$$
; *i.e.* generator of \mathbb{Z}_3 .³

Reason: Tree-level and 1-loop neutrino masses vanish at leading order of h_0^{ν} . Dominant contribution comes from δh^{ν} .

³ Same results are obtained if ω is a generator of \mathbb{Z}_6 .

Model – Resonant leptogenesis

CP asymmetry, is enhanced if two right-handed neutrinos obey

$$|m_{N_{\alpha}}-m_{N_{\beta}}|\sim\Gamma_{\beta}/2$$
.

Tri-resonant case produces even larger asymmetry:

Leptogenesis and TRL

- Introduction
 - Matter-antimatter asymmetry
 - Leptogenesis
- Model
 - Yukawa structure
 - Resonant leptogenesis
- 3 Leptogenesis and TRL
 - Initial conditions
 - Varying relativistic degrees of freedom
 - Results
- 4 Summing up

Leptogenesis and TRL – Initial conditions

The transport equations are pretty attractive:

Leptogenesis and TRL – Initial conditions

The transport equations are pretty attractive:

The initial conditions do not really matter!

Leptogenesis and TRL – Varying relativistic degrees of freedom

Changing $d/dt \to d/dT$ introduces extra terms proportional to $dh_{\rm eff}/dT$ (ignored in the literature).

Leptogenesis and TRL – Varying relativistic degrees of freedom

Changing $d/dt \rightarrow d/dT$ introduces extra terms proportional to $dh_{\rm eff}/dT$ (ignored in the literature).

Leptogenesis and TRL – Results

Things change significantly for $m_{N_1} \lesssim 100 \; \mathrm{GeV}$:

⁴The PRISM/PRIME Project, Nuclear Physics B - Proceedings Supplements 218 (2011), no. 1 44–49.

Leptogenesis and TRL – Results

Things change significantly for $m_{N_1} \lesssim 100 \; \mathrm{GeV}$:

Possible probe: $\mu \rightarrow e$ transitions within Titanium.⁴

⁴The PRISM/PRIME Project, Nuclear Physics B - Proceedings Supplements 218 (2011), no. 1 44–49.

- Introduction
 - Matter-antimatter asymmetry
 - Leptogenesis
- Model
 - Yukawa structure
 - Resonant leptogenesis
- Leptogenesis and TRL
 - Initial conditions
 - Varying relativistic degrees of freedom
 - Results
- Summing up

What to take home:

What to take home:

- Tri-resonant leptogenesis works.
- Masses below the TeV scale.
- Varying degrees of freedon must be included.

What to take home:

- Tri-resonant leptogenesis works.
- Masses below the TeV scale.
- Varying degrees of freedon must be included.

As for the future:

What to take home:

- Tri-resonant leptogenesis works.
- Masses below the TeV scale.
- Varying degrees of freedon must be included.

As for the future:

- Multi-resonant leptogenesis?
- \bullet Study known models including varying $h_{\rm eff},$ to find how much they change.
- Extensions of TRL might introduce additional CP violations or mixing, making the parameter space better?

