ALICE Experiment: Present and Future

Dong Jo, Kim

University of Jyväskylä, Particle Physics Day 2023, Jyväskylä, Finland

12.10.2023

D. J. Kim (JYU)

ALICE highlights

12.10.2023

- ALICE strategy for Run 3
 - ▶ 50 kHz Pb–Pb interaction rate (Run 2 < 10 kHz)
 - Experiment upgrades during LS2 III
 - Continue to collect pp with high multiplicity trigger and achieve Pb–Pb $(x \ 3 \text{ more precise tracking and } x \ 100 \text{ statistics increase})$
- Physics goals : CERN Yellow Rep.Monogr. 7 (2019) 1159-1410
 - High-precision measurement $(h^{\pm}, \text{PID}_{\cdot}) \rightarrow \text{Viscosity}$ and further QCD transport coefficients
 - Heavy-flavours and jets
 - Charmonium states
- \rightarrow Investigating the quasi-particle structure of QCD matter.

 - \rightarrow Testing colour screening and regeneration dynamics.
- Dileptons and low-mass vector mesons $\rightarrow \gamma$ symmetry restoration, initial temperature and EoS.

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

12.10.2023

イロト 不得下 イヨト イヨト

Upgraded Experiment – ALICE 2

ALICE Collaboration:

40 countries, 170 institutes, 1972 members 360 papers.

ALICE Finland:

3 seniors, 3 post doc, 4+1 PhD-students

ALICE 2 is build on the great success of the past 10 years operation. TPC(detector (15)), FIT((2 + (13) + (14) + (17)), ALICE Grid Tier-1 since 2007

D. J. Kim (JYU)

ALICE highlights

2/20

Key elements of ALICE Upgrades for Run 3, installed in 2019–2021

D. J. Kim (JYU)

ALICE highlights

12.10.2023

3/20

ALICE in Run 3 in few numbers

- 05.07.2022: start of Run 3
- pp collisions at $\sqrt{s} = 0.9$ and 13.6 TeV ($\approx 30 \ pb^{-1}$)
- 17-18.11.2022: Pb–Pb pilot run (766 ·10⁹, 2.6 ·10⁹[Run2])
- 26.10.2023 : Pb–Pb
 - ▶ Pb–Pb: started with $\approx 15 \text{ kHz}$
 - ▶ 47 kHz on 9th Oct

D. J. Kim (JYU)

ALICE highlights

12.10.2023

3

ALICE Fast Interaction Trigger (FIT) - Activities during 2023 and late 2022

- Following the 2022 YETS, pp collisions were back in April 2023
 - ▶ FIT operated well while being commissioned for the upcoming Pb–Pb
 - Successful van der Meer scans for luminosity calibrations
- Hardware and electronics updates:
 - ▶ FT0-C re-cabling to avoid signal reflections \rightarrow cleaner or C trigger
 - ▶ FDD re-cabling to enable layer coincidence requirements in triggers \rightarrow cleaner triggers
 - \blacktriangleright New mezzanine boards in the processing modules of FV0 and FDD \rightarrow larger dynamic range, improved time measurement

ALICE Fast Interaction Trigger (FIT) - Activities during 2023 and late 2022

- Software (O^2) and detector control system (DCS) updates:
 - ▶ Online calibration for time offsets and new features for online and offline data quality control (O²)
 - New laser calibration procedure with dedicated quality control (QC) software to monitor aging of FT0 (DCS & O²)
 - New procedures to backup hardware and trigger settings to be used in QC and anchored MC (DCS & O^2)
 - ▶ Automated laser scans to determine detector channel health and map out dead channels for QC and anchored MC (DCS & O²)
 - Centrality and Event Plane calibration is prepared (O^2)

Space-time history of Heavy-Ion Collisions

 $\begin{array}{l} \mbox{Quark-gluon plasma (QGP) is a nearly perfect guark-gluon fluid:} \\ \mbox{Best fit seems to indicate $\eta/s \approx 0.12$ around $T_c \approx 150$ MeV, very close to $1/4\pi$ (≈ 0.08) from string $$ theory^a(AdS/CFT$ correspondence). $} \end{array}$

^aD. T. Son et. al. Phys. Rev. Lett. 94 (2005) 111601

D. J. Kim (JYU)

ALICE highlights

12.10.2023

7/20

Flow measurements

		(日) (四) (四) (10) (10) (10) (10) (10) (10) (10) (10	E
D. J. Kim (JYU)	ALICE highlights	12.10.2023	7 / 20

Anisotropic flow briefly

 \rightarrow Anisotropic flow = medium response to the initial geometry

$$V_n \equiv v_n e^{in\Psi_n}$$
$$f(\varphi) = \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\varphi - \Psi_n)) \right)$$

Credits to M. Lesch

8/20

S. Voloshin	et al.,	Ζ.	Phys.	С	70,	665 - 672	(1996)	
-------------	---------	----	-------	---	-----	-----------	--------	--

	D.	J.	Kim	(JYU
--	----	----	-----	------

ALICE highlights

Flow in large systems: Constraining the QGP properties

Recent sensitivity studies of flow observables to model parameters

 \rightarrow Higher sensitivity of higher-order flow observables to QGP properties!

Ongoing new developments

- Experimentally
 - symmetric to asymmetric cumulants: arXiv:2303.13414 accepted by PRC, C. Mordasini, A. Onnerstad New
- Phenomenology: Inclusion of RHIC data in Bayesian analyses, M. Virta New

"Why do we need independent observables to improve our understanding of the QCD matter properties; how?"

(See Maxim's talk)

These flow observables and our Baysian analysis were highlighted in ALICE White paper, arXiv:2211.04384 \leftarrow synergy with the local theory group

D. J. Kim (JYU)

ALICE highlights

12.10.2023

9/20

- Strong collective behaviour associated with the QGP formation in large systems
- In recent years, collectivity also observed in small systems (eg. ALICE, JHEP 05 (2021) 290, Phys. Lett. B 719 (2013) 29-41)
 - \longrightarrow Presence of strongly interacting medium in small systems?
- Problems: Flow measurements strongly biased by non-flow effects, jets and resonance decay
- Solutions:
 - latest development is published in hep-ph, PRC 108, 034909 (18.09.2023), T. Kallio, M. Virta New
 - \rightarrow gives a definitive suggestion on how to extract flow signals in small systems
 - experimental verifications of the non-flow subtraction and hydro limits in ALICE, arXiv:2308.16591 (31.08.2023, submitted to JHEP) A. Onnerstad New

イロト 不得下 イヨト イヨト

э.

Flow in small systems: ALICE results

- Verified the validity of the non-flow subtraction in small systems
- Testing the limit of the multiplicity in the flow signal
- Comparison to the state-of-the-art model, pointing to the shortage of the models and discussing the hydro limits in small systems.
- Excellent inputs to developments of the models for small systems, including MC-based models.

D. J. Kim (JYU)

< 日 > < 同 > <

D. J. Kim (JYU)

ALICE highlights

12.10.2023

イロト 不得下 イヨト イヨト

11/20

-

Search for jet quenching effects in high-multiplicity pp collisions

- Even though flow signatures are observed
- No sign of jet quenching in small systems

・ロト ・ 一 ト ・ ヨ ト 12.10.2023

Jet observables in pp show different modifications in HM w.r.t MB events

• The similar modifications are also seen in the PYTHIA8 model.

• To identify jet quenching, first disentangle these observed effects.

D. J. Kim (JYU)

ALICE highlights

A Forward Calorimeter (FoCal) in ALICE

イロト イヨト イヨト イヨト

- 34

ALICE Forward Calorimeter - Physics Goals

- $\bullet\,$ FoCal acceptance, located ≈ 7 m from IP of ALICE , $3.4 < \eta < 5.8$
- Non-linear QCD evolution to study saturated state of gluonic matter at small and moderate Q^2
- Nuclear modification of the gluon density at small-x: global analyses (DIS, p+A) EPPS21, nCTEQ15, nNNPDF3.0
- Synergy with the local theory group

イロト イポト イヨト イヨト

- Isolated photons, azimuthal correlations: $(\pi^0, \gamma^{iso}, jet)_{trigg} \ge (\pi^0, jet)_{assoc}$.
- Vector meson photoproduction in ultra-peripheral collisions (UPC)
- Long-range flow correlations
- Jet quenching at forward rapidities

• ...

Physics of the ALICE Forward Calorimeter upgrade: ALICE-PUBLIC-2023-001

15/20

Photons

- Isolated photons
- Azimuthal correlations: $(\pi^0, \gamma^{iso}, \text{jet})_{trigg} \ge (\pi^0, \text{jet})_{assoc}$.
- Combining measurements in FoCal with central detectors probes the full phase space of x_2

A D F A D F A D F A D F

Foward di-jets and di-hadrons

di-jets 1, pT₂ > 10 GeV KATIE Error band 2.2 [n' KATIE KATIE full b-space *, V2* < 5. 2 KATIE with correction factor $\sqrt{s} = 8.16 \text{ TeV}$ 1.8 1.6 ⁴ 4 1.4 1.2 0.8 0.6 2.6 2.7 2.8 2.9 3.1 2.5 3 $\Delta \Phi$

- di-jet a coplanarity in forward rapidity
- π^0 's in the FoCal-E.
- Better side band subtraction method for both hemisphere than previous measurements.

UPC and flow decorrelations

- Spatial distribution of small-x gluons and
- Sensitive to event-by-event fluctuations
- Provide valuable inputs to constraints for initial conditions

< E 12.10.2023 18 / 20

イロト イヨト イヨト

FoCal performance: Detector resolution

- Good energy resolution, can be improved by better clusterization?
- Details are in FoCal performance public note: ALICE-PUBLIC-2023-004

ALICE highlights

12.10.2023 19 / 20

・ロト ・ 一 ト ・ ヨ ト

- LHC/ALICE is prepared for the future.
 - ▶ LS2 upgrade of ALICE is completion to exploit the higher rate and to improve the physics performance.
 - Running and development of FIT
- Sensitive and precise flow measurements improve understanding of the QCD matter properties from large to small system collisions.
 - Zeroing the uncertainties of the transport properties.
 - Deeper understanding of the initial conditions.
- Progress in measuring flow and jet in small systems, with remaining challenges in physics and measurements.
- Active work on FoCal technical design report
 - \Rightarrow FoCal performance public note: ALICE-PUBLIC-2023-004
- Significant pioneering contributions from Jyväskylä Univ.(Thanks to the collaborative efforts).
- A lot more to learn from Run 3 data.

A D F A D F A D F A D F

Thank you for your attention!

・ロト ・四ト ・ヨト ・ヨト ・ヨー