Tackling the flavour puzzles using the CMS experiment

- My research path at UZH & future plans

UZH seminar 25 Sep 2023

Strange patterns of quarks and leptons as we see in the SM

- Doublet x 3 generations
- Similarity between quark and lepton sector
- Vastly different masses •

Strange patterns of quarks and leptons as we see in the SM

- Doublet x 3 generations
- Similarity between quark and lepton sector
- Vastly different masses •

- Doublet x 3 generations

This leads to a speculation:

At high energy scale (i.e. at the beginning of the universe), there existed microscopic interaction that couples differently depending on the fermion flavour and could have shaped the flavour structure

This leads to a speculation:

At high energy scale (i.e. at the beginning of the universe), there existed microscopic interaction that couples differently depending on the fermion flavour and could have shaped the flavour structure

This leads to a speculation:

At high energy scale (i.e. at the beginning of the universe), there existed microscopic interaction that couples differently depending on the fermion flavour and could have shaped the flavour structure

Weak force

Electromagnetic force

Strong force

How to find it — going higher in energy

LHCb

LHC — Largest & highest-energy particle collider

ATLAS

Hypothetical boson (spin 0 or 1) that couples to quark & lepton

Hypothetical boson (spin 0 or 1) that couples to quark & lepton

Hypothetical boson (spin 0 or 1) that couples to quark & lepton

There is more strong reason ...

D(*)

Hypothetical boson (spin 0 or 1) that couples to quark & lepton

Hypothetical boson (spin 0 or 1) that couples to quark & lepton

Hypothetical boson (spin 0 or 1) that couples to quark & lepton

Direct search for LQ that couples to the third generation (bt)

was the only process that people looked for (large cross-section)

Direct search for LQ that couples to the third generation (bt)

was the only process that people looked for (large cross-section)

After discussing with Gino's group

turns out to be also important

- Cross-section $\propto \lambda^2$
- To explain B-anomalies, we lacksquareneed large $\lambda \rightarrow$ this process also becomes relevant

1. Select events with ττ final state and 1 b-tagged jet

1. Select events with ττ final state and 1 b-tagged jet

2. Examine the excess of events at the tail of scalar p_T sum, S_T = $p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"

- OCOOC

LQ

h

1. Select events with ττ final state and 1 b-tagged jet

2. Examine the excess of events at the tail of scalar p_T sum, S_T = $p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"

Solo

LQ

1. Select events with ττ final state and 1 b-tagged jet

- 2. Examine the excess of events at the tail of scalar p_T sum, S_T = $p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"
- 3. Set a limit on the LQ cross-section

Solo

LQ

1. Select events with ττ final state and 1 b-tagged jet

2. Examine the excess of events at the tail of scalar p_T sum, $S_T = p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"

Solo

LQ

1. Select events with ττ final state and 1 b-tagged jet

2. Examine the excess of events at the tail of scalar p_T sum, $S_T = p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"

Sologe

LQ

1. Select events with ττ final state and 1 b-tagged jet

2. Examine the excess of events at the tail of scalar p_T sum, $S_T = p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"

Sologe

LQ

1. Select events with ττ final state and 1 b-tagged jet

2. Examine the excess of events at the tail of scalar p_T sum, $S_T = p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"

Solo

LQ

1. Select events with ττ final state and 1 b-tagged jet

2. Examine the excess of events at the tail of scalar p_T sum, $S_T = p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"

Solo

LQ

1. Select events with ττ final state and 1 b-tagged jet

2. Examine the excess of events at the tail of scalar p_T sum, S_T = $p_T(\tau_1) + p_T(\tau_2) + p_T(b$ -jet) using "template fit"

Solo

LQ

3. Set a limit on the LQ cross-section

Naively speaking ... we define,

- $CL = P(N < N_{obs}|B+S) / P(N < N_{obs}|B)$
- Reject signal if CL < 5%

- Cross-section $\propto \lambda^4$
- Particularly relevant when λ is large

Non resonant

More comprehensive analysis

We target all production modes **at once**

More comprehensive analysis

We target all production modes **at once**

When λ changes, we have different mixtures of pair/single/ non-resonant \rightarrow Signal distribution changes as a function of λ (and m_{LQ} too)

More comprehensive analysis

We target all production modes **at once**

When λ changes, we have different mixtures of pair/single/ non-resonant → Signal distribution changes as a function of λ (and m_{LQ} too)

To maintain good sensitivity, we classify events based on the number of reconstructed (b-)jets → effectively increase S/B

To maintain good sensitivity, we classify events based on the number of reconstructed (b-)jets → effectively increase S/B

0 b-jet

>= 1 b-jet

To maintain good sensitivity, we classify events based on the number of reconstructed (b-)jets \rightarrow effectively increase S/B

11 / 30

Non resonant

To maintain good sensitivity, we classify events based on the number of reconstructed (b-)jets \rightarrow effectively increase S/B

11 / 30

To maintain good sensitivity, we classify events based on the number of reconstructed (b-)jets → effectively increase S/B

¹¹/30

To maintain good sensitivity, we classify events based on the number of reconstructed (b-)jets \rightarrow effectively increase S/B

11 / 30

[Ex: for 0 b-jet category, because we see excess!]
1. Require events with ττ final state &
>= 1 jet but none of them is b-tagged

[Ex: for 0 b-jet category, because we see excess!] 1. Require events with $\tau\tau$ final state & >= 1 jet but none of them is b-tagged

[Ex: for 0 b-jet category, because we see excess!]
1. Require events with ττ final state &
>= 1 jet but none of them is b-tagged

[Ex: for 0 b-jet category, because we see excess!]
1. Require events with ττ final state &
>= 1 jet but none of them is b-tagged

[Ex: for 0 b-jet category, because we see excess!]
1. Require events with ττ final state &
>= 1 jet but none of them is b-tagged

[Ex: for 0 b-jet category, because we see excess!]
1. Require events with ττ final state &
>= 1 jet but none of them is b-tagged

[Ex: for 0 b-jet category, because we see excess!]
1. Require events with ττ final state &
>= 1 jet but none of them is b-tagged

A: Because we are probing high-q² regime **Credit: A. Greljo, B. Stefanek**

A: Because we are probing high-q² regime **Credit: A. Greljo, B. Stefanek**

- **q**²

q²

A: Because we are probing high-q² regime **Credit: A. Greljo, B. Stefanek**

SM Bkg.

A: Because we are probing high-q² regime Credit: A. Greljo, B. Stefanek

SM Bkg.

A: Because we are probing high-q² regime Credit: A. Greljo, B. Stefanek

SM Bkg.

A: Because we are probing high-q² regime Credit: A. Greljo, B. Stefanek

CMS

SM Bkg.

A: Because we are probing high-q² regime Credit: A. Greljo, B. Stefanek

CMS

SM Bkg.

A: Because we are probing high-q² regime Credit: A. Greljo, B. Stefanek

CMS

We can test new physics with much better S/B

SM Bkg.

A: Because we are probing high-q² regime Credit: A. Greljo, B. Stefanek

We can test new physics with much better S/B

SM Bkg.

A: yes, we can do B-physics measurements using $\mu\mu$ final state ^{15/30}

A: yes, we can do B-physics measurements using <u>uu final state</u>

Unlike LHCb, we operate our detector at high instantaneous luminosity and a lot of trigger • bandwidths have been allocated to high-p_T physics programs (e.g. Higgs, BSM searches)

A: yes, we can do B-physics measurements using $\mu\mu$ final state

- Unlike LHCb, we operate our detector at high instantaneous luminosity and a lot of trigger bandwidths have been allocated to high-p_T physics programs (e.g. Higgs, BSM searches)
- We need to use the final state that is easy to trigger enough to fit the overall trigger budget
 → final states with μμ (~10Hz out of total 1kHz trigger budget)

A: yes, we can do B-physics measurements using $\mu\mu$ final state

- Unlike LHCb, we operate our detector at high instantaneous luminosity and a lot of trigger bandwidths have been allocated to high-p_T physics programs (e.g. Higgs, BSM searches)
- We need to use the final state that is easy to trigger enough to fit the overall trigger budget
 → final states with μμ (~10Hz out of total 1kHz trigger budget)

 $\mathscr{B}(B_c \to J/\psi \tau \bar{\nu})$ $\mathscr{B}(B_c \to J/\psi\mu\bar{\nu})$

- We can do a good job, because CMS collected many events with $J/\psi \rightarrow \mu\mu$ trigger
- x30 statistics than LHCb

 $\mathscr{B}(B_c \to J/\psi \tau \bar{\nu})$ $\mathcal{B}(B_c \to J/\psi\mu\bar{\nu})$

Challenging: τ lepton has low-momentum (< 10 GeV) → it's very difficult to identify

- We can do a good job,
 because CMS collected many
 events with J/ψ → μμ trigger
- x30 statistics than LHCb

 $\mathscr{B}(B_c \to J/\psi \tau \bar{\nu})$ $\mathcal{B}(B_c \to J/\psi\mu\bar{\nu})$

Challenging: τ lepton has low-momentum (< 10 GeV) → it's very difficult to identify

- We can do a good job, because CMS collected many events with J/ψ → μμ trigger
- x30 statistics than LHCb

 $\mathcal{B}(B_c \to J/\psi \tau \bar{\nu})$ $\mathscr{B}(B_c \to J/\psi\mu\bar{\nu})$

Challenging: τ lepton has low-momentum (< 10 GeV) \rightarrow it's very difficult to identify

- We can do a good job, because CMS collected many events with $J/\psi \rightarrow \mu\mu$ trigger
- x30 statistics than LHCb

O(1000) pions, most of them having O(1) GeV momentum

Extend our $\mu\mu$ program: R(J/ ψ) analysis

 $\mathscr{B}(B_c \to J/\psi \tau \bar{\nu})$ $\mathcal{B}(B_c \to J/\psi\mu\bar{\nu})$

Challenging: τ lepton has low-momentum (< 10 GeV) \rightarrow it's very difficult to identify

- We can do a good job, because CMS collected many events with $J/\psi \rightarrow \mu\mu$ trigger
- x30 statistics than LHCb

Finding 3 out of 1000 is very tough work \rightarrow No algorithm has existed to efficiently identify this!

Built a new algorithm to identify low-momentum $\tau^{^{18}/^{30}}$

Target $\tau \rightarrow \pi\pi\pi\nu$

Try to find **combination** of three pions that ...

V. Mikuni C. Galloni We used state-of-the-art graph neural network

V. Mikuni C. Galloni We used state-of-the-art graph neural network

We used state-of-the-art graph neural network

We used state-of-the-art graph neural network

We used state-of-the-art graph neural network

I'm leading $R_{J/\psi} = \frac{\mathscr{B}(B_c \to J/\psi \tau \nu)}{\mathscr{B}(B_c \to J/\psi \mu \nu)}$ which is close to completion

Add another example of the CMS' excellent capability for B-physics using the μμ final state!

• B-physics measurements with taus

M. Huwlier

• B-physics measurements with taus

M. Huwlier

- Super symmetry searches with soft taus (compressed mass scenario)

• B-physics measurements with taus

M. Huwlier

- Super symmetry searches with soft taus (compressed mass scenario)
- Tau g-2 measurement using heavy ion data

• B-physics measurements with taus

M. Huwlier

- Super symmetry searches with soft taus (compressed mass scenario)
- Tau g-2 measurement using heavy ion data

arXiv:2206.05192

B-physics measurements with taus

M. Huwlier

- Super symmetry searches with soft taus (compressed mass scenario)
- Tau g-2 measurement using heavy ion data

First observation at the LHC after the last measurement from LEP (2004)

arXiv:2206.05192

We tried to extend our physics programs by targeting lowmomentum muons and electrons \rightarrow develop the **Trigger!**

We tried to extend our physics programs by targeting lowmomentum muons and electrons → develop the **Trigger!**

Special data-taking in 2018

We collected 10 billion events of

offering us opportunities for B-physics & exotic searches 2

We tried to extend our physics programs by targeting lowmomentum muons and electrons → develop the **Trigger!**

Special data-taking in 2018

We collected 10 billion events of

offering us opportunities for B-physics & exotic searches

In Run-3, we extended this effort to ...

2

We tried to extend our physics programs by targeting lowmomentum muons and electrons → develop the **Trigger!**

Special data-taking in 2018

We collected 10 billion events of

offering us opportunities for B-physics & exotic searches

In Run-3, we extended this effort to ...

21 / 30

Need to deal with low-p_T electrons

Need to deal with low-p_T electrons

CMS-DP-2019-043

Need to deal with low-p_T electrons

Developed a new, track- based low-p_T electron reconstruction scheme

Low-pT electron performance (BParking) Standard Low-pT GSF track (mean=0.977) v-pT electron (mean=0.942) Same mistag rate (mean=0.677) electron (mean=0.380) 10 8 Electron p_T (GeV)

CMS-DP-2019-043

$$R_{K} = 0.78_{-0.23}^{+0.46}$$
 (stat) $_{-0.05}^{+0.09}$

Need to deal with low-p_T electrons

Developed a new, track- based low-p_T electron reconstruction scheme

Low-pT electron performance (BParking) Standard Low-pT GSF track (mean=0.977) *y*-pT electron (mean=0.942) Same mistag rate (mean=0.677) electron (mean=0.380) 10 8 Electron p_T (GeV)

CMS-DP-2019-043

$$R_{K} = 0.78_{-0.23}^{+0.46}$$
 (stat) $_{-0.05}^{+0.09}$

 \rightarrow will definitely improve with data being taken by ee trigger

Future plans

1

Run 2 (2016 — 2018)

Future plans

Future plans

Run 2 (2016 — 2018) 1

Run 3 (2022 — 2025) 2

- Run 2 (2016 2018) 1
- Run 3 (2022 2025) 2

High-Luminosity LHC (2029 — 2040)

15

Future plans

- Run 2 (2016 2018) 1
- Run 3 (2022 2025) 2

High-Luminosity LHC (2029 — 2040)

15

Future plans

High-Luminosity LHC (HL-LHC) upgrade

LFU test ($\tau\tau$ v.s $\mu\mu$ or ee) at high-energy scale

LFU test (ττ v.s μμ or ee) at high-energy scale

N(ττ) / N(μμ or ee)

LFU test (ττ v.s μμ or ee) at high-energy scale

 $N(\tau\tau) / N(\mu\mu \text{ or ee})$

We do this in bins of (b-)jet multiplicity so that we are sensitive to various NP: LQ, MSSM H $\rightarrow \tau\tau$, Z' $\rightarrow \tau\tau$ etc ...

LFU test (ττ v.s μμ or ee) at high-energy scale

 $N(\tau\tau) / N(\mu\mu \text{ or ee})$

$B(B_s \rightarrow \tau \tau)$ measurement at CMS

- Br(B_s $\rightarrow \tau\tau$) = 7.7 x 10⁻⁷ (SM) $\rightarrow \sim$ 10⁻⁴ (NP): smoking gun

• Why $B_s \rightarrow \tau \tau$? : Doubly suppressed in the SM. Any NP that contributes at the tree level can enhance Br!

$B(B_s \rightarrow \tau \tau)$ measurement at CMS

- $-Br(B_s \rightarrow \tau \tau) = 7.7 \times 10^{-7} (SM) \rightarrow \sim 10^{-4} (NP)$: smoking gun
- However, this has been difficult due to **two** reasons

• Why $B_s \rightarrow \tau \tau$? : Doubly suppressed in the SM. Any NP that contributes at the tree level can enhance Br!

$B(B_s \rightarrow \tau \tau)$ measurement at CMS

- $-Br(B_s \rightarrow \tau\tau) = 7.7 \times 10^{-7} (SM) \rightarrow \sim 10^{-4} (NP)$: smoking gun
- However, this has been difficult due to **two** reasons

e.g) consider the most promising $B_s \rightarrow \tau(\rightarrow \pi \pi \pi \nu) \tau(\rightarrow \pi \pi \pi \nu)$ decay

All hadronic final states with everything low p_T \rightarrow low trigger eff. & low **τ reconstruction efficiencies**

• Why $B_s \rightarrow \tau \tau$? : Doubly suppressed in the SM. Any NP that contributes at the tree level can enhance Br!

$B(B_s \rightarrow \tau \tau)$ measurement at CMS

- $-Br(B_s \rightarrow \tau\tau) = 7.7 \times 10^{-7} (SM) \rightarrow \sim 10^{-4} (NP)$: smoking gun
- However, this has been difficult due to **two** reasons

e.g) consider the most promising $B_s \rightarrow \tau(\rightarrow \pi \pi \pi \nu) \tau(\rightarrow \pi \pi \pi \nu)$ decay

All hadronic final states with everything low p_T \rightarrow low trigger eff. & low **τ reconstruction efficiencies** Huge "combinatorial" **backgrounds** where two B's overlapping each other

leading to 6 hadrons final state

• Why $B_s \rightarrow \tau \tau$? : Doubly suppressed in the SM. Any NP that contributes at the tree level can enhance Br!

$B(B_s \rightarrow \tau \tau)$ measurement at CMS

- Br(B_s $\rightarrow \tau\tau$) = 7.7 x 10⁻⁷ (SM) $\rightarrow \sim$ 10⁻⁴ (NP): smoking gun
- However, this has been difficult due to **two** reasons

e.g) consider the most promising $B_s \rightarrow \tau(\rightarrow \pi \pi \pi \nu) \tau(\rightarrow \pi \pi \pi \nu)$ decay

All hadronic final states with everything low p_T \rightarrow low trigger eff. & low **τ** reconstruction efficiencies

• Why $B_s \rightarrow \tau \tau$? : Doubly suppressed in the SM. Any NP that contributes at the tree level can enhance Br!

$B(B_s \rightarrow \tau \tau)$ measurement at CMS

- Br(B_s $\rightarrow \tau\tau$) = 7.7 x 10⁻⁷ (SM) $\rightarrow \sim$ 10⁻⁴ (NP): smoking gun
- However, this has been difficult due to **two** reasons

e.g) consider the most promising $B_s \rightarrow \tau(\rightarrow \pi \pi \pi \nu) \tau(\rightarrow \pi \pi \pi \nu)$ decay

All hadronic final states with everything low p_T \rightarrow low trigger eff. & low **τ** reconstruction efficiencies

• So far, only weak constraint from LHCb: $B(B_s \rightarrow \tau \tau) < 6.8 \times 10^{-3}$

• Why $B_s \rightarrow \tau \tau$? : Doubly suppressed in the SM. Any NP that contributes at the tree level can enhance Br!

PRL 118, 251802 (2017)

• Easy to trigger!

- Easy to trigger! \bullet
- Top-quark is heavy \bullet \rightarrow everything high p_T

- Easy to trigger! \bullet
- Top-quark is heavy \bullet \rightarrow everything high p_T
 - \rightarrow easy to reconstruct taus
- **CMS** *Private Work* ⊐ 0.15 ຮ ~100 gain reducing There are ~no combinatorial backgrounds combinatorial 0.10 backgrounds, as two B's are 0.05 produced separately

0.00^L

2

- Easy to trigger!
- Top-quark is heavy \bullet \rightarrow everything high p_T
 - \rightarrow easy to reconstruct taus
- **CMS** *Private Work* ⊐ 0.15 ຮ ~100 gain reducing There are ~no combinatorial backgrounds combinatorial 0.10 backgrounds, as two B's are 0.05 produced separately

0.00

2

- Statistically speaking, we have much less Bs mesons collected than LHCb (~1%)
- But sensitivity wise, with these gains, ulletwe can be competitive
- Nobody thought possible from energy-frontier ulletexperiment!

We need more "τ-lepton data" from HL-LHC (2029 —)

- We need more "τ-lepton data" from HL-LHC (2029 —)
- However, HL-LHC will be operated x5 higher luminosity than now

- We need more "τ-lepton data" from HL-LHC (2029 —)
- However, HL-LHC will be operated x5 higher luminosity than now
- Trigger must be more selective (e.g. increase p_T threshold) → lead to loss of sensitivity

- We need more "τ-lepton data" from HL-LHC (2029 -)
- However, HL-LHC will be operated x5 higher \bullet luminosity than now
- Trigger must be more selective (e.g. increase p_T threshold) \rightarrow lead to loss of sensitivity
- To accommodate this, CMS will introduce \bullet track-trigger machinery

- We need more "τ-lepton data" from HL-LHC (2029 -)
- However, HL-LHC will be operated x5 higher \bullet luminosity than now
- Trigger must be more selective (e.g. increase p_T threshold) \rightarrow lead to loss of sensitivity
- To accommodate this, CMS will introduce • track-trigger machinery

Key: track information already available **at the first stage** of the online event selection (L1-trigger)

- We need more "τ-lepton data" from HL-LHC \bullet (2029 -)
- However, HL-LHC will be operated x5 higher \bullet luminosity than now
- Trigger must be more selective (e.g. increase p_T threshold) \rightarrow lead to loss of sensitivity
- To accommodate this, CMS will introduce \bullet track-trigger machinery
- Potential game-changer for CMS because we could trigger τ_h more efficiently than now by targeting "jet" with 1 or 3 charged tracks in it

Key: track information already available **at the first stage** of the online event selection (L1-trigger)

- We need more "τ-lepton data" from HL-LHC \bullet (2029 -)
- However, HL-LHC will be operated x5 higher \bullet luminosity than now
- Trigger must be more selective (e.g. increase p_T threshold) \rightarrow lead to loss of sensitivity
- To accommodate this, CMS will introduce lacksquaretrack-trigger machinery
- Potential game-changer for CMS because we could trigger τ_h more efficiently than now by targeting "jet" with 1 or 3 charged tracks in it

Key: track information already available **at the first stage** of the online event selection (L1-trigger)

If made, this is going to be the first in hadron collider to trigger jets with **substructure** at L1! (ATLAS can't do this)

Develop H $\rightarrow \tau_h \tau_h$ trigger for the HL-LHC

Develop H $\rightarrow \tau_h \tau_h$ trigger for the HL-LHC

Develop H $\rightarrow \tau_h \tau_h$ trigger for the HL-LHC

Potential game-changer for the $\lambda_{\rm H}$ measurement

puzzles

UZH are leading many new physics searches, Higgs physics, and, many more, in CMS that can shed light on the flavour

- puzzles
- analysis ideas and will keep doing so

UZH are leading many new physics searches, Higgs physics, and, many more, in CMS that can shed light on the flavour

We have been pioneering new object identification & new

- puzzles
- We have been pioneering new object identification & new analysis ideas and will keep doing so
- We'll enjoy Run-3 and HL-LHC data, hoping to make a groundbreaking discovery!

UZH are leading many new physics searches, Higgs physics, and, many more, in CMS that can shed light on the flavour

Thank you!

Aebischer, J., Isidori, G., Pesut, M. et al. Confronting the vector leptoquark hypothesis with new low- and highenergy data. *Eur. Phys. J. C* **83**, 153 (2023). https://doi.org/10.1140/epjc/ <u>s10052-023-11304-5</u>

Difficulties

Two taus are produced in close vicinity (Lorentz boost)

Difficulties

Two taus are produced in close vicinity (Lorentz boost)

making it more challenging to reconstruct it

Difficulties

Two taus are produced in close vicinity (Lorentz boost)

making it more challenging to reconstruct it

Proof-of-principle studies: Look at

 $\mu^+\mu^-$ mass (GeV)

making it more challenging to reconstruct it

 $\mu^+\mu^-$ mass (GeV)