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Postponing our questions:

Why do Higgs boson couplings span at
least 5 orders of magnitude?
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This leads to a speculation:

At high energy scale (i.e. at the beginning of the universe), there existed microscopic interaction that
couples differently depending on the fermion flavour and could have shaped the flavour structure
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Direct search for LQ that couples to the third

generation (bt)
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After discussing with Gino’s group

was the only process
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turns out to be also important

* Cross-section X A2

* To explain B-anomalies, we
need large A > this process
also becomes relevant
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To maintain good sensitivity, we classify events based on the
number of reconstructed (b-)jets > effectively increase S/B

11/30



T—I_

LQ <
7 b

\\/as
\\ ,7_—
LQ <
b
Pair prod.
b

Non resonant

To maintain good sensitivity, we classify events based on the
number of reconstructed (b-)jets > effectively increase S/B

>=1-jet

11/30



Non resonant

L . . 11
To maintain good sensitivity, we classify events based on the / 30
number of reconstructed (b-)jets > effectively increase S/B

>=1-jet

Mo =1TeV Pair
Single
0.6 Non-resonant

0 2 4 5 8 10
Number of jets

0.8F

0.6

>=1 jet

Pair -
Single
Non-resonant

0.4

0.2

0.0

3 4 5
Number of b-jets



Non resonant

L . . 11
To maintain good sensitivity, we classify events based on the / 30
number of reconstructed (b-)jets > effectively increase S/B

Half of the non resonant

M =1 TeV Pair
Single
0.6 Non-resonant

0 2 4 5 8 10
Number of jets

0.8F

Single
Non-resonant

0.4

0.2

0.0

3 4 5
Number of b-jets



~+

LQ <
d b

\\/as
\\ ,7_—
LQ <
b
Pair prod.
b

Non resonant

M =1 TeV Pair

Single
Non-resonant

4 5 3 10

Number of jets

L . . 11
To maintain good sensitivity, we classify events based on the / 30
number of reconstructed (b-)jets > effectively increase S/B

Half of the non resonant

0.8F

0.6

Single
Non-resonant

0.4

0.2

0.0

3 4 5

Number of b-jets



7
\/as
N\

Pair prod.

Non resonant

T

\\ T
G <

b

_|_

LQ <
g b

L . . 11
To maintain good sensitivity, we classify events based on the / 30
number of reconstructed (b-)jets > effectively increase S/B

Half of the non resonant

Single + Pair

Mo =1TeV Pair
Single
0.6 Non-resonant

0 2 4 5 8 10
Number of jets

Another half of the non resonant

0.8F

0.6

Single
Non-resonant

0.4

0.2

0.0

3 7 5
Number of b-jets



Analysis Flow

[Ex: for 0 b-jet category, because we see excess!]
1. Require events with 1T final state &
>= 1 jet but none of them is b-tagged



Analysis Flow

[Ex: for 0 b-jet category, because we see excess!]
1. Require events with 1T final state &
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2. Examine the excess at the tail of the scalar pt sum
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[Ex: for 0 b-jet category, because we see excess!]
1. Require events with 1T final state &
>= 1 jet but none of them is b-tagged

2. Examine the excess at the tail of the scalar pt sum
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Finding 3 out of 1000 is very tough work
> No algorithm has existed to efficiently identify this!
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| | BB, — Jlyrv)
I’'m leading Rf/l// = AB(B. — Jlyuv)

which is close to completion

Private Compilation

Add another example of the
CMS’ excellent capability for
B-physics using the

up final state!

LHCb, Runt, 1, mr———e———mm PRL 120, 121801 (2018)
CMS, 2018, 1, EE———ec———mmmmm  CMS-PAS-BPH-22-012
CMS, Run2, 1, _:.:— Assuming SM value ...
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http://cds.cern.ch/record/2868988?ln=en
https://doi.org/10.1103/PhysRevLett.120.121801
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Although anomaly has just
disappeared ..., we performed

Rk = 0.78.0.23%0-46 (stat) -.05*0-09 (syst)
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LFU test (Tt v.s uu or ee) at high-energy scale

N(tt) / N(1M Or ee)
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 Why Bs-> 11?7 : Doubly suppressed in the SM. Any NP that contributes at the tree level can enhance Br!
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B(Bs » Tt) measurement at CMS

 Why Bs-> 11?7 : Doubly suppressed in the SM. Any NP that contributes at the tree level can enhance Br!
— Br(Bs~> 1T) = 7.7 x 107 (SM) > ~10-4 (NP): smoking gun

CMS 140 fb™' (13 TeV)
* However, this has been difficult due to two reasons 140C + bwa  — Faeor
- Bg = wtu B® — - :
e.g) consider the most promising Bs - t(>ttrtnv) T(>mtrnv) decay 120~ onons e Semileptoniebkg
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§ 80 Bs > UL .
= BPH-21-006 -
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\)EK‘ _
- . : : 20 -
All hadronic final states with Huge “combinatorial” +_
everything low pr backgrounds where two B’s 29 S s
> low trigger eff. & low overlapping each other . _[GeV]
T reconstruction efficiencies leading to 6 hadrons final state

* So far, only weak constraint from LHCb: B(Bs > t1) <6.8 x 103 PRL 118,251802 (2017)
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ldea: use tt to measure B(B;s » TT)

* There are ~no
combinatorial
backgrounds,
as two B’s are
produced separately
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ldea: use tt to measure B(B;s » TT)

' GMS Private Work
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* However, HL-LHC will be operated x5 higher
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Hadronically decaying tau (th) trlggers for the HL-LHC

* We need more “1-lepton data” from HL-LHC a stub/ |\ Pass Fail
(2029 —)
1+4mm \ | ® B
* However, HL-LHC will be operated x5 higher " y f .
luminosity than now <toopm '/

Key: track information already available at the first

Trigger must be more selective (e.g. increase stage of the online event selection (L1-trigger)

pr threshold) »> lead to loss of sensitivity

* To accommodate this, CMS will introduce ik cone
track-trigger machinery

If made, this is going to be the first
in hadron collider to trigger jets
with substructure at L1!

(ATLAS can’t do this)

* Potential game-changer for CMS
because we could trigger Th» more
efficiently than now by targeting
“jet” with 1 or 3 charged tracks in it
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Conclusions

* UZH are leading many new physics searches, Higgs physics,
and, many more, in CMS that can shed light on the flavour
puzzles

* We have been pioneering new object identification & new
analysis ideas and will keep doing so

* We’ll enjoy Run-3 and HL-LHC data, hoping to make a
groundbreaking discovery!
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"B Thankyou!
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Proof-of-principle studies: Look at
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