

Test of lepton flavour universality in $B^{\pm} \rightarrow K^{\pm}\ell\ell$ decays, via R_{κ}

G. Karathanasis on behalf of the CMS Collaboration

30/10/2023

Outline

- Introduction
 - Theoretical aspects
 - R_κ definition and previous results
 - LHC and the CMS detector
- B Parking triggering strategy
 - Motivation
 - Implementation
 - Purity on B candidates
 - B Parking usage
- Main analysis
 - B candidate reconstruction
 - Selection of B $\rightarrow \mu\mu K$ candidates
 - Low p_T electron reconstruction
 - Selection of $B \rightarrow eeK$ candidates
 - $B \rightarrow \mu\mu X$ mass fits
 - $B \rightarrow eeX$ mass fits
 - Simultaneous mass fit $B \to \mu \mu K$ in q^2 bins
 - Systematic unc. and corrections
- Results
 - dBF(B $\rightarrow \mu\mu K$)/dq² measurement
 - BF(B $\rightarrow \mu\mu K)$ and R_{\kappa} in 1.1 < m($\mu\mu)^2$ < 6 GeV² measurements

CMS PAS BPH-22-005

CMS Physics Analysis Summary

Contact: cms-pag-conveners-bphysics@cern.ch

2023/08/30

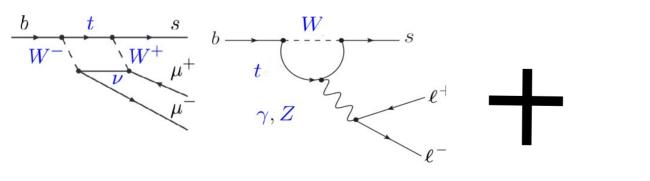
Test of lepton flavor universality in $B^\pm \to K^\pm \ell^+ \ell^-$ decays

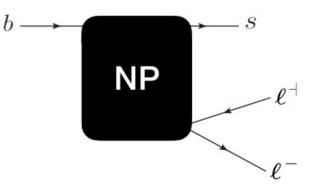
The CMS Collaboration

All plots and figures can be found here:

<u>BPH 22-005</u>

Interest in $b \rightarrow s\ell\ell$ transitions


- CMS
- So far no beyond Standard Model (SM) physics (BSM) phenomena have been observed
- Indirect searches can probe higher energies \rightarrow increasingly more interesting
- Rare decays: powerful tool for indirect searches


Interest in $b \rightarrow s\ell\ell$ transitions

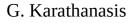
- So far no beyond Standard Model (SM) physics (BSM) phenomena have been observed
- Indirect searches can probe higher energies \rightarrow increasingly more interesting
- Rare decays: powerful tool for indirect searches
- $b \rightarrow s \ell \ell$ transition in the SM:
 - Prohibited at tree level (FCNC)
 - Via loop diagrams (eg penguin, box)
 - Very rare → Weak signals in BSM might be visible

- Quantities affected by the BSM:
 - Lepton flavour universality (LFU)
 - Branching ratios (BR)
 - Differential BR
 - Angular distributions

Describing $b \rightarrow s\ell\ell$ with Effective Theory

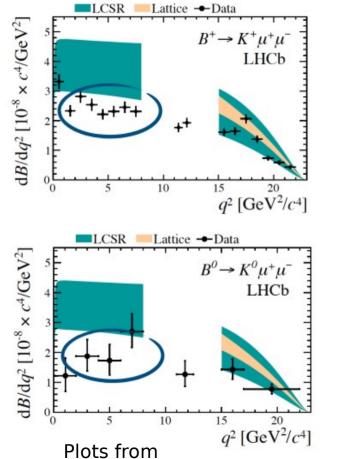
Different $q^2 = m(\ell, \ell)^2 \rightarrow \text{different } C_i \text{ probed}$

R_K definition



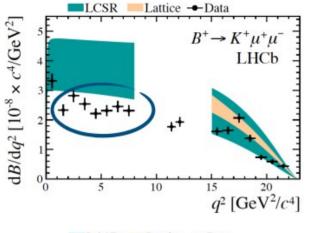
LFU test with minimal theoretical uncertainty via the B $\rightarrow \mu\mu K$ to B $\rightarrow eeK$ ratio, R_K:

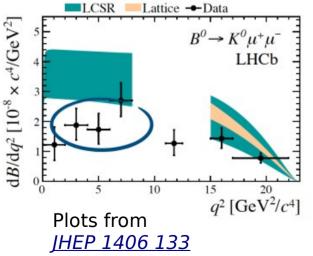
$$R_{K} = \frac{BF(B \rightarrow \mu \mu K)}{BF(B \rightarrow e e K)}$$


To reduce experimental uncertainties \rightarrow divide both numerator and denominator with BF(B \rightarrow J/ ψ K). R_K becomes:

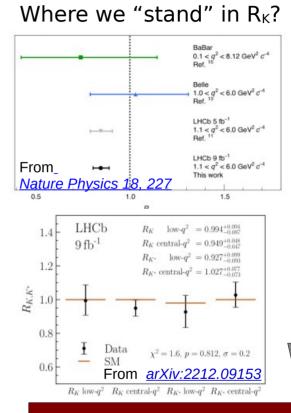
$$R_{K} = \frac{BF(B \rightarrow \mu \mu K)}{BF(B \rightarrow J/\psi K, J/\psi \rightarrow \mu \mu)} / \frac{BF(B \rightarrow e e K)}{BF(B \rightarrow J/\psi K, J/\psi \rightarrow e e)}$$

B Physics anomalies


- Deviations of measurements and SM expectations in dBF/dq²:
 - -- Seen in several channels
 - -- Hadronic form factors have large uncertainties
 - -- BSM effect or common issue of SM expectation?
- Furthermore several angular measurements show $\sim 3\sigma$ deviations from SM expectation
- Intriguing pattern


[HEP 1406 133

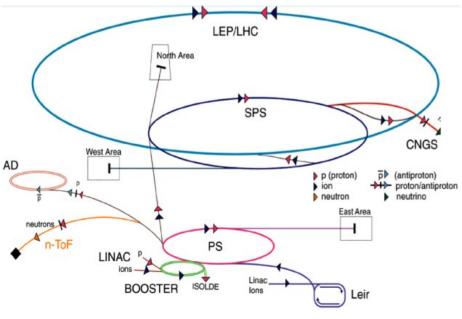
B Physics anomalies



Ĕ

- Deviations of measurements and SM expectations in dBF/dq²:
 - -- Seen in several channels
 - -- Hadronic form factors have large uncertainties
 - -- BSM effect or common issue of SM expectation?
- Furthermore several angular measurements show $\sim 3\sigma$ deviations from SM expectation
- Intriguing pattern

Today: the $1^{st} R_{K}$ result from CMS using Run 2 data


G. Karathanasis

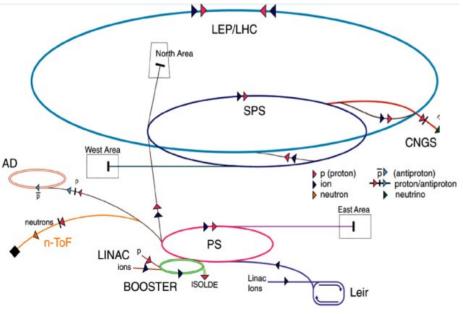
The Large Hadron Collider

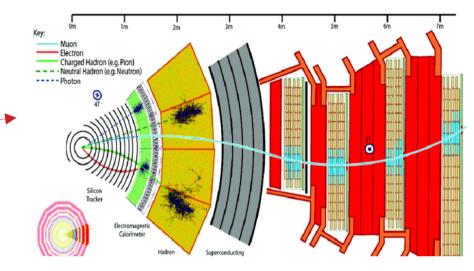
Large Hadron Collider

- Most powerful accelerator
- 27-kilometer ring
- Located in Switzerland & France
- 2 proton beams colliding at 13 TeV
- 4 Interaction points:

ATLAS, CMS, LHCb, Alice

G. Karathanasis


The Compact Muon Solenoid

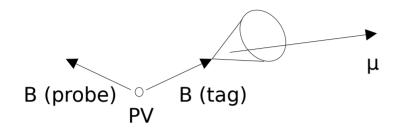


Large Hadron Collider

- Most powerful accelerator
- 27-kilometer ring
- Located in Switzerland & France
- 2 proton beams colliding at 13 TeV
- 4 Interaction points:

Compact Muon Solenoid

- Located near Cessy
- Magnet generates 3.8 T
- General purpose experiment
- Detectors (from inside out):
 - Tracker, electromagnetic calorimeter, hadronic calorimeter, muon chambers


More information in the <u>TDR</u>

G. Karathanasis

B – Parking strategy

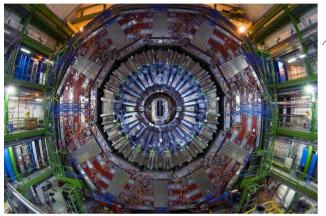
Event collection:

- Proposal: Use one b-hadron to trigger, while the other decays freely
- BF(b $\rightarrow \mu$) ~20%: large fraction in a very clean object
- Use $\mu\text{-based}$ paths to trigger
- This technique is known as Tag-and-Probe
- Tag = triggering B

Back-of-the-envelop estimation: $N = f_B * BF (B \rightarrow eeK) * R_{HLT} * P_{HLT} * T$

Where:

- N = Produced events
- BF (B \rightarrow eeK) \sim O(10⁻⁷)
- $f_B = B$ hadron type fraction (0.4)
- R_{HLT} = Trigger rate (~2 kHz)
- P_{HLT} = Trigger purity (~75%)
- -T = HLT active time

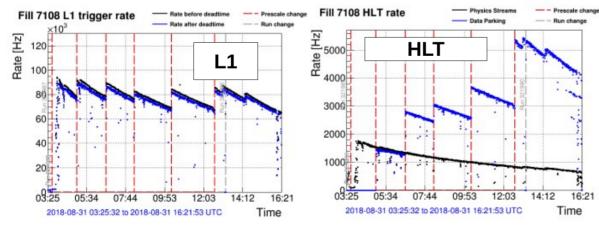

Aim for **N** ~**300 events** => T = 1.11×10^{6} sec

To collect 300 eeK events ~ 10×10^9 B events needed

Implementation

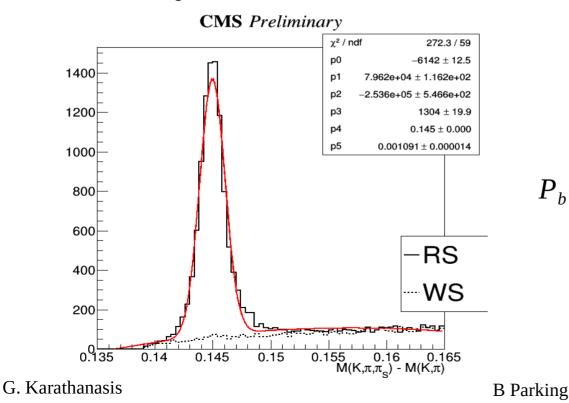
Collisions (p - p) at 40 MHz

L1 Trigger


- Single-µ L1 seeds
- η restricted, soft p_{T}
- Purity in B decays ~30%
- Constant L1 rate

- L1 seeds as inputs
- Refined p_T and d_{xy}
- cut

DAQ


- Saved in single copy
- Stored on tape until computing resources available
- Long delay in reconstruction; procedure known as "Parking"

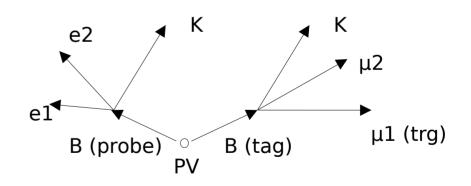
- As luminosity decreases lower $p_{\ensuremath{\mathsf{T}}}$ seeds enabled
- Tune/optimize paths during data-taking
- Collected during 2018

Purity in B candidates

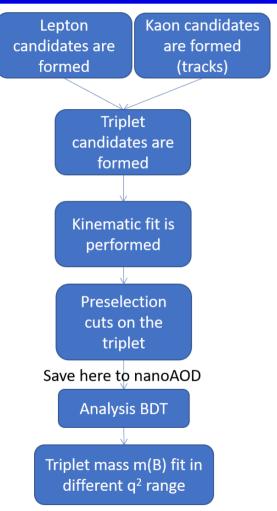
- D^o built by combining tracks of opposite charges, that pass some selection
- D* built by combining D⁰ candidates with a soft track
- Measure P_b for the HLT_Mu9_IP6: μ is required to pass this trigger
- Right Sign, RS: $Q(\mu) \neq Q(\pi_s)$ [Signal] ; Wrong Sign, WS: $Q(\mu) = Q(\pi_s)$ [BKG]
- Plotting M(K, π , π_s)-M(K, π) creates a distinctive peak

$$P_{b} = \frac{(N(b \rightarrow \mu))}{(N(\mu))} = \dots = P_{b} = 0.73$$

More information in <u>DP 19-043</u>


Usage of B Parking sample

- B Parking sample: powerful tool used in many analysis
- Single displaced muon trigger: used in Exotic and B physics with muon(s) in final state
- "probe B" used for non-triggered decays
 - (like $B \rightarrow eeK$)


- In R_{K} analysis both B $\,\rightarrow\,\mu\mu\text{K}$ and
 - $\mathsf{B} \ \rightarrow \ ee \ K \ needed$
- B $\rightarrow \mu\mu K$ comes from the "tag B" to improve statistics
- B \rightarrow eeK from the "probe B"

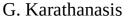
Main analysis

Analysis overview

A practical problem: Running on 10¹⁰ events requires a lot of storage, time and computing power

Analysis framework strategies:
1) Apply preselection cuts as early as possible in the chain
2) Move time consuming processes at the end
3) Modify the precision of ntuple variables to reduce size

Preselection cuts:


- Optimized using using adaptive grid search (back up)

Selection:

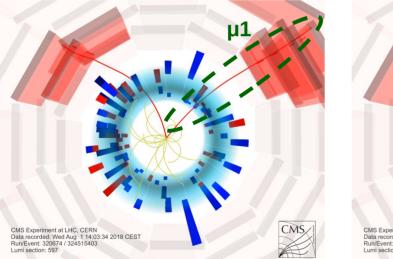
- Based on Boosted Decision Trees (BDT) with XGBoost

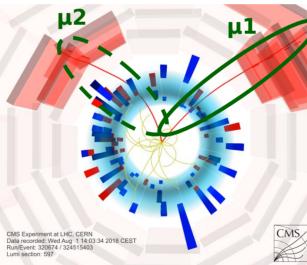
Fits:

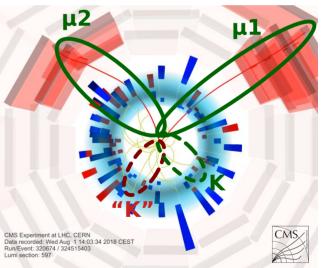
- All mass fits are unbinned max likelihood fits, using RooFit

Main analysis

Reconstructing B candidates

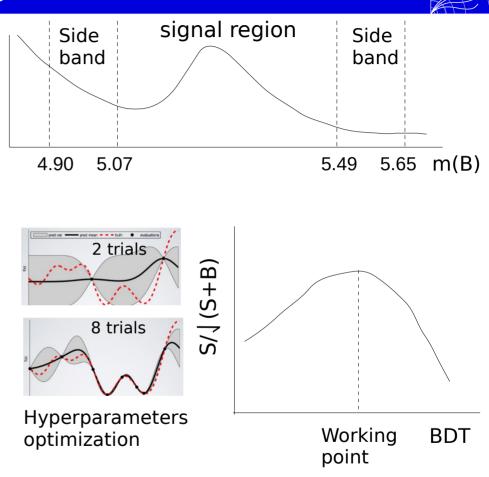



All events are collected by the single μ parking triggers


Step 1: Find the triggering muon

Step 2: Select μ close in z to triggering $\mu \rightarrow dilepton$ candidates with m<5GeV

Step 3: Select tracks close to dilepton; assign m(K) and kinematicaly fit to built B candidates


- Events can have more than 1 candidate

BDT optimization strategies

- Main selection based on BDT
 - -- 8-fold cross validation structure
 - -- Data sidebands as background
 - -- Simulated (MC) $B \rightarrow \mu\mu K$ as signal

- Optimization
 - -- Input variables
 - -- Configuration options (hyperparameters)
 - -- Tested for "mass sculpting"
 - -- Working point defined as the value that Maximizes the S/J(S+B) of the signal

Same techniques/methods but different BDTs for µµK and eeK states

CMS,

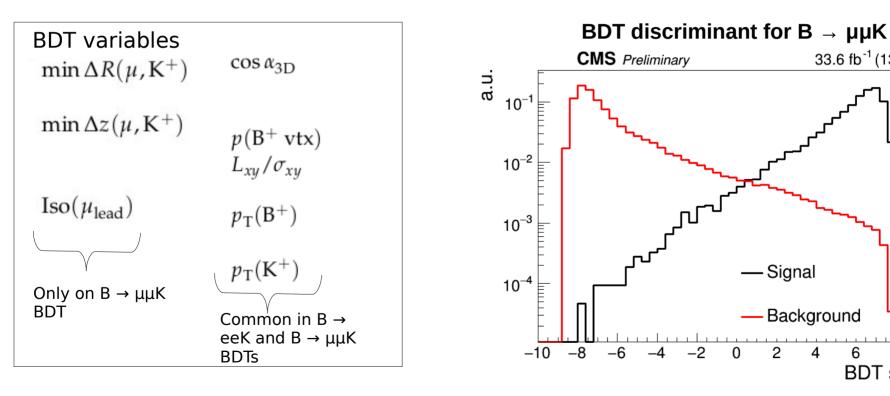
Selection of $B \rightarrow \mu\mu K$ candidates

CMS

33.6 fb⁻¹ (13 TeV)

8

BDT score


6

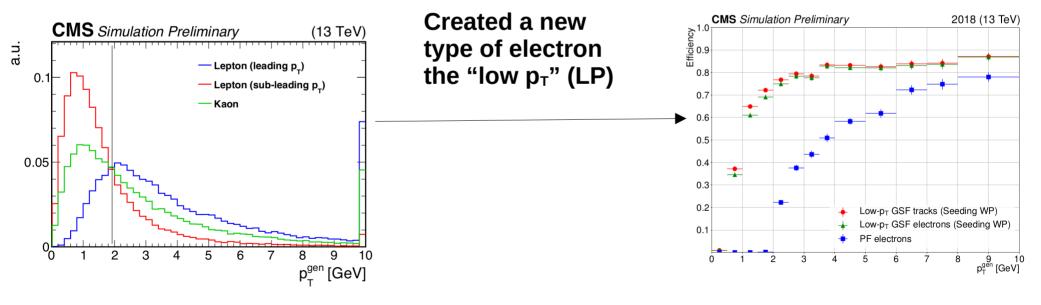
4

10

Object selection:

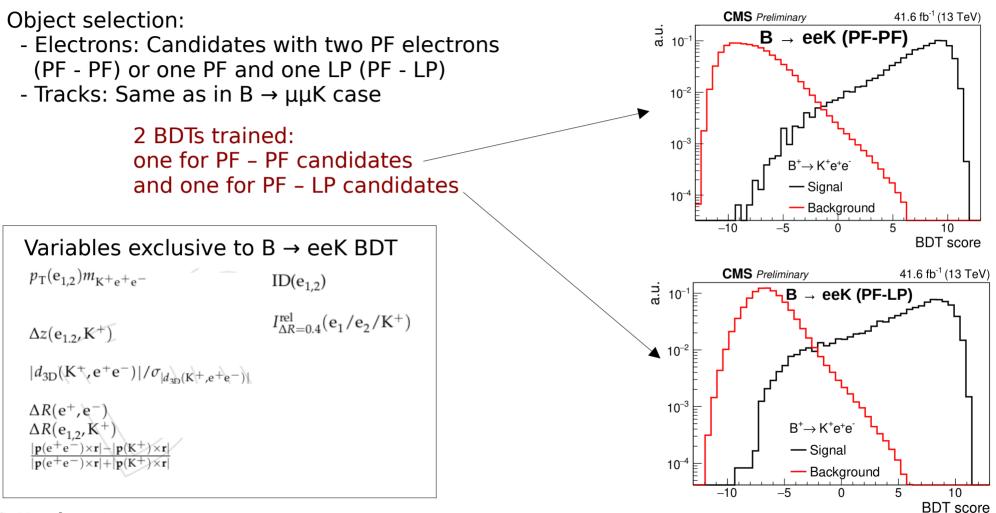
- Muons: Medium ID, $p_T(\mu 1) > 9$ GeV, $p_T(\mu 2) > 2$ GeV and $|\eta| < 2.4$
- Tracks: "High purity" ID, $p_T > 1$ GeV and |n| < 2.4

Low p_T electrons


Motivation:

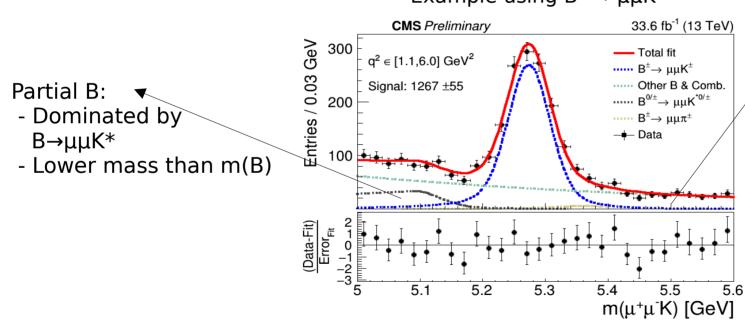
- Most B produce e with p_T <2GeV
- Cannot be reconstructed with the "standard" algo (particle flow, PF)

More information in <u>DP 19-043</u>


Low p_⊤ e:

- Tracker seeded
- e candidates identified MVA methods
- Gain in efficiency for $p_T(e) < 5 \text{ GeV}$

Selection of $B \rightarrow eeK$ candidates



Main analysis

Background composition

The backgrounds are divided in two categories based on the type:

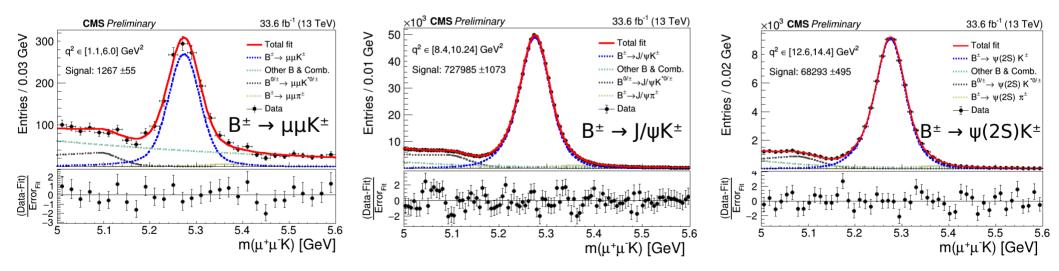
- Partial B: Candidates from partial reconstruction of B meson decays with many tracks
- Combinatorial: Candidates created with 1 or more objects from pile up/other B

Example using $B^{\pm} \rightarrow \mu \mu K^{\pm}$

Combinatorial:

- Only background In signal region
- Dominates the high mass sideband
- Studied using B candidates with same sign leptons

$B \rightarrow \mu\mu X$ mass fits



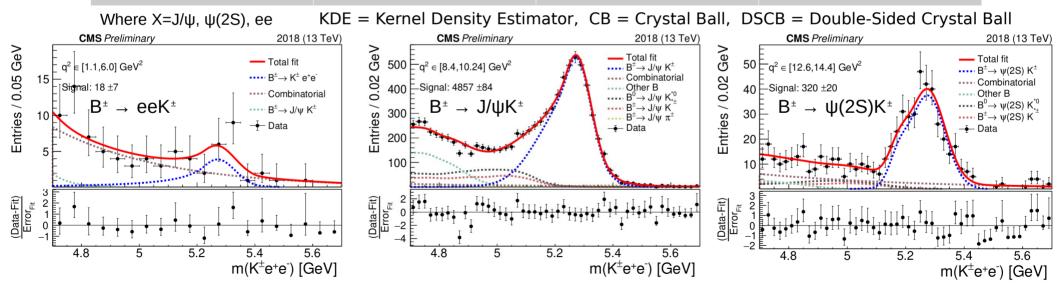
Functions used for each fit component per decay

	$B^{\pm} \rightarrow \mu \mu K^{\pm}$	$B^{\pm} \rightarrow J/\psi K^{\pm}$	$B^{\pm} \rightarrow \psi(2S)K^{\pm}$
Signal	DSCB + Gaussian	Sum of 3 Gaussians	DSCB + Gaussian
Comb & other B	Exponential	Exponential	Exponential
$B^{\pm} \rightarrow K^{\star 0/\pm} X$	DSCB	DSCB + Exponential	DSCB + Exponential
$B^{\pm} \to \ \pi^{\pm} \ X$	DSCB	DSCB	DSCB

Where X=J/ ψ , ψ (2S), $\mu\mu$

DSCB = Double-Sided Crystal Ball

G. Karathanasis


Main analysis

$B \rightarrow eeX$ mass fits (PF - PF)

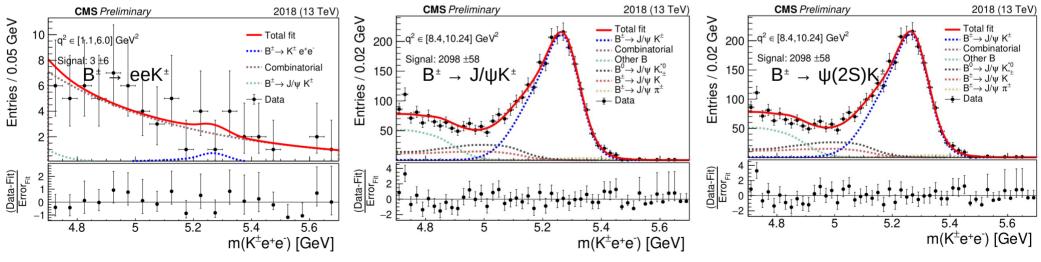
Functions used for each fit component for 2 PF electron channels

	$B^{\pm} \rightarrow ~ eeK^{\pm}$	$B^{\pm} \rightarrow J/\psi K^{\pm}$	$B^{\pm} \rightarrow \psi(2S)K^{\pm}$	
Signal	DSCB	CB + Gaussian	CB + Gaussian	
Combinatorial/Other B	Exponential / -	Exponential / KDE	Exponential / KDE	
$B^{\pm} \rightarrow K^{*0/{\pm}}X$	-	KDE template	KDE template	
$B^{\pm} \to \ \pi^{\pm} \ X$	-	СВ	-	
$B^{\pm} \ \rightarrow \ J/\psi K^{\pm}$	KDE template	-	-	

G. Karathanasis

Main analysis

$B \rightarrow eeX$ mass fits (PF - LP)



Functions used for each fit component for PF - LP electron channels

	$B^{\pm} \rightarrow eeK^{\pm}$	$B^{\pm} \rightarrow J/\psi K^{\pm}$	$B^{\pm} \rightarrow \psi(2S)K^{\pm}$	
Signal	DSCB	CB + Gaussian	CB + Gaussian	
Combinatorial/Other B	Exponential / -	Exponential / KDE	Exponential / KDE	
$B^{\pm} \rightarrow K^{\star 0/\pm} X$	-	KDE template	KDE template	
$B^{\pm} \to \ \pi^{\pm} \ X$	-	СВ	-	
$B^{\pm} \rightarrow J/\psi K^{\pm}$	KDE template	-	-	

Where X=J/ψ, ψ(2S), ee

 $\mathsf{KDE}=\mathsf{Kernel}\;\mathsf{Density}\;\mathsf{Estimator},\;\;\mathsf{CB}=\mathsf{Crystal}\;\mathsf{Ball},\;\;\mathsf{DSCB}=\mathsf{Double-Sided}\;\mathsf{Crystal}\;\mathsf{Ball}$

G. Karathanasis

Main analysis

- Additional analysis scope: measure the dBF/dq²
- Use the same selection and code and instead for a single fit, do a simultaneous fit in q² bins
- Result to be compared with several theoretical predictions

Bin	q ² range [GeV]
1	0-0.98
2	1.1-2.0
3	2.0-3.0
4	3.0-4.0
5	4.0-5.0
6	5.0-6.0
7	6.0-7.0
8	7.0-8.0
9	11.0-11.8
10	11.8-12.5
11	14.82-16.0
12	16.0-17.0
13	17.0-18.0
14	18.0-19.24
15	19.24-22.9

$B \rightarrow \mu\mu K$ mass fits in q^2 bins

80

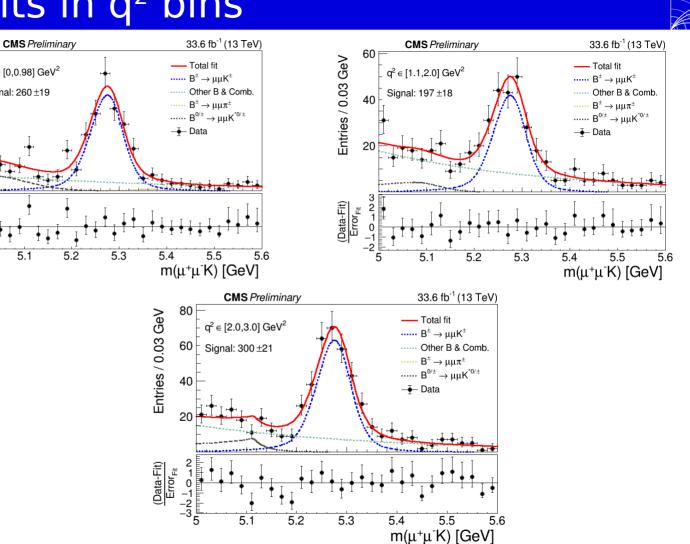
60

40

20

2

5

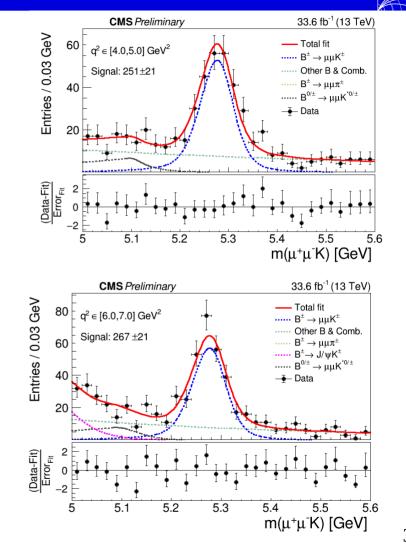

 $q^2 \in [0, 0.98] \text{ GeV}^2$

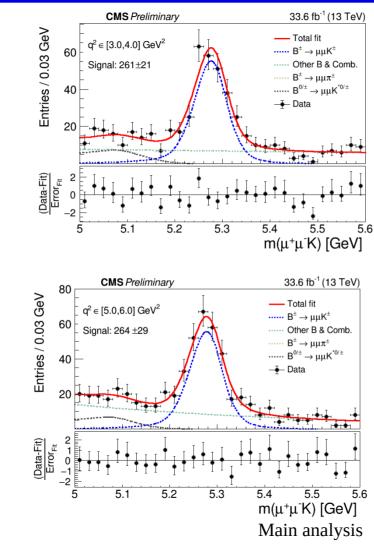
5.1

Signal: 260 ±19

Entries / 0.03 GeV

<u>(Data-Fit)</u> Error_{Fit}

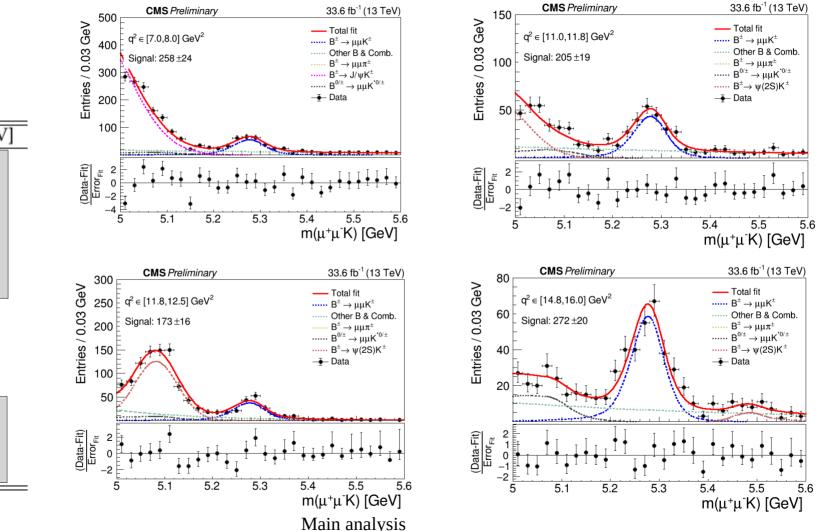



Bin	q ² range [GeV]	
1	0-0.98	
2	1.1-2.0	
3	2.0-3.0	
4	3.0-4.0	
5	4.0-5.0	
6	5.0-6.0	
7	6.0-7.0	
8	7.0-8.0	
9	11.0-11.8	
10	11.8-12.5	
11	14.82-16.0	
12	16.0-17.0	
13	17.0-18.0	
14	18.0-19.24	
15	19.24-22.9	

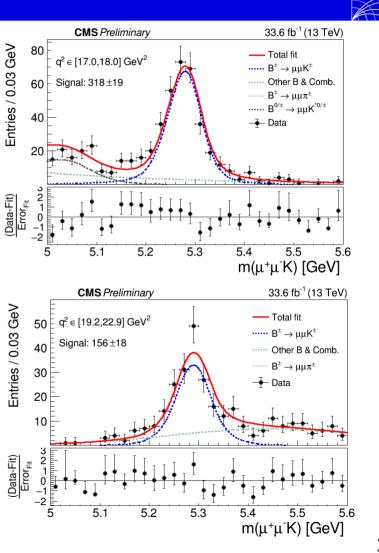
G. Karathanasis

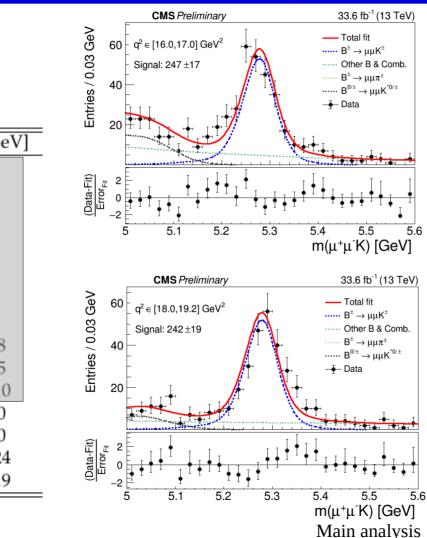
Main analysis

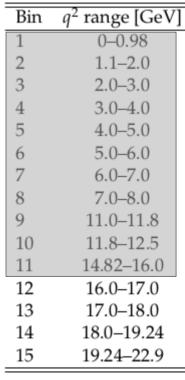
CMS



Bin q^2 range [GeV]10-0.9821.1-2.032.0-3.043.0-4.054.0-5.065.0-6.076.0-7.087.0-8.0911.0-11.81011.8-12.51114.82-16.01216.0-17.01317.0-18.01418.0-19.241519.24-22.9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bin	q² range [GeV]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0-0.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1.1-2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2.0-3.0
6 5.0-6.0 7 6.0-7.0 8 7.0-8.0 9 11.0-11.8 10 11.8-12.5 11 14.82-16.0 12 16.0-17.0 13 17.0-18.0 14 18.0-19.24	4	3.0-4.0
7 6.0–7.0 8 7.0–8.0 9 11.0–11.8 10 11.8–12.5 11 14.82–16.0 12 16.0–17.0 13 17.0–18.0 14 18.0–19.24	5	4.0-5.0
$\begin{array}{cccc} 8 & 7.0-8.0 \\ 9 & 11.0-11.8 \\ 10 & 11.8-12.5 \\ 11 & 14.82-16.0 \\ 12 & 16.0-17.0 \\ 13 & 17.0-18.0 \\ 14 & 18.0-19.24 \end{array}$	6	5.0-6.0
911.0–11.81011.8–12.51114.82–16.01216.0–17.01317.0–18.01418.0–19.24	7	6.0-7.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	7.0-8.0
11 14.82–16.0 12 16.0–17.0 13 17.0–18.0 14 18.0–19.24	9	11.0-11.8
12 16.0–17.0 13 17.0–18.0 14 18.0–19.24	10	11.8-12.5
13 17.0–18.0 14 18.0–19.24	11	14.82-16.0
14 18.0–19.24	12	16.0-17.0
	13	17.0-18.0
15 19.24–22.9	14	18.0-19.24
	15	19.24-22.9


G. Karathanasis


CMS



Bin *q*² range [GeV] 0 - 0.982 1.1 - 2.03 2.0 - 3.03.0 - 4.04 5 4.0 - 5.05.0 - 6.06 6.0 - 7.08 7.0 - 8.09 11.0-11.8 10 11.8-12.5 11 14.82-16.0 12 16.0-17.0 13 17.0-18.0 18.0-19.24 14 15 19.24-22.9

G. Karathanasis

CMS

Systematic uncertainties and corrections

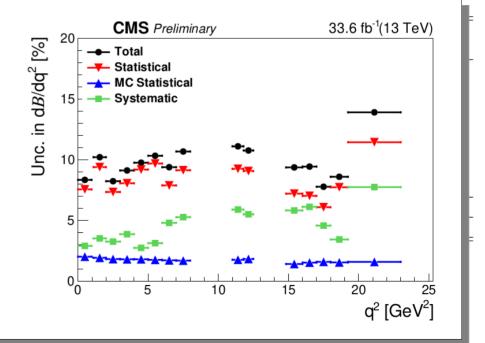
- Corrections on MC to account for known disagreements with data:
 - -- Trigger response, lepton reconstruction/identification, B p_T spectrum, BDT response
- Systematics are treated as independent between the muon and electron part of $R_{\ensuremath{\kappa}}$
- The total uncertainty of R_{κ} is dominated by the statistical part of electron channels

Uncertainties on the muon part

Source	Impact on the $R(K)$ ratio [%]	Source	Impact or	the $R(K)$ ratio [%]
Background description, $low-q^2$ bin	1.75		PF-PF	PF-LP
Trigger turn-on	1.30	Signal and background description	5	5
Reweighting in $p_{\rm T}$ and rapidity	0.86	J/ψ event leakage to the low- q^2 bin	4	9
Background description, J/ ψ CR	0.64	BDT efficiency stability	2	5
J/ ψ meson radiative tail description	0.48	BDT cross validation	2	3
Pileup	0.38	Trigger efficiency	1	4
Signal shape description	0.32	BDT data/simulation difference	1	2
Trigger efficiency	0.16	J/ ψ meson radiative tail description	1	1
J/ ψ resonance shape description	0.08	Total systematic uncertainty	7	13
Nonresonant contribution to the J/ ψ CF	R 0.07	Statistical and total uncertainty	40	200
Total systematic uncertainty	2.5		40	200
Statistical uncertainty in MC samples	1.7			
Statistical uncertainty	7.5			
Total uncertainty	8.1			

Uncertainties on the electron part

Systematic uncertainties and corrections



- Corrections on MC to account for known disagreements with data:
 - -- Trigger response, lepton reconstruction/identification, B p_T spectrum, BDT response
- Systematics are treated as independent between the muon and electron part of R_K
- The total uncertainty of R_{κ} is dominated by the statistical part of electron channels

Source Backgrou Trigger tu Reweight Backgrou J/ ψ meso Pileup Signal sh Trigger ei J/ ψ reson Nonresor Total syst Statistica Statistica Total unc

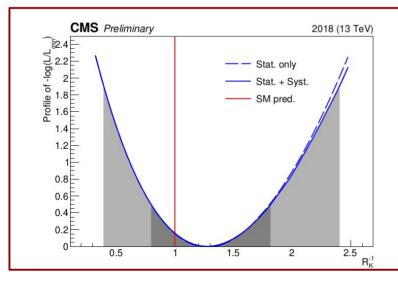
- Same uncertainty sources considered for the single-bin muon measurement, are evaluated in each q^2 bin

 In all bins: total uncertainty is dominated by the statistical component

Results

BF(B \rightarrow µµK) and R_K in the low q²

CMS


BF(B \rightarrow µµK) in full low-q² range (1.1 < q² < 6.0 GeV²):

BF ($B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$), 1.1 < q² < 6.0 GeV²

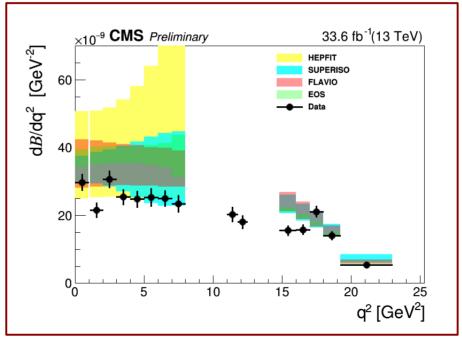
= $(1.242 \pm 0.054 \text{ (stat)} \pm 0.011 \text{ (MC stat)} \pm 0.040 \text{ (syst)}) \times 10^{-7}$

Can be compared with the predictions of theoretical packages

Package	EOS	Flavio	HEP fit	SuperIso
Prediction [×10-7]	1.89 ±0.13	1.71 ±0.27	1.98 ±0.73	1.65 ±0.34

Central value and confidence range by minimizing the Likelihood fit function of R_{K}^{-1} :

```
R_{K} = 0.78^{+0.46}_{-0.23} (stat) ^{+0.09}_{-0.05} (syst)
```


Precision dominated by the low stats of $B \rightarrow eeK$

Measurement of differential BF(B $\rightarrow \mu\mu K$)

For differential BR measurement, a fit is performed in all q² bins at the same time
 Compare measurement with the theoretical predictions in each q² bin

Measurement of dBR/dq² and comparison with theory

G. Karathanasis

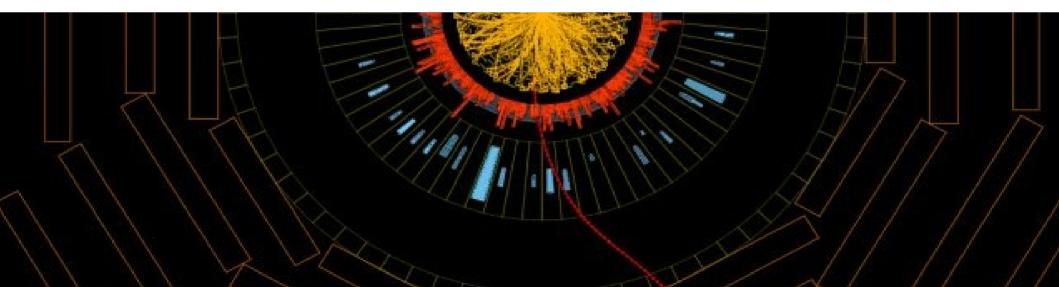
Results

A look into the (near) future

- Lessons learned from Run 2:
 - -- Muon channel: high statistics \rightarrow comparable precision to world average
 - -- Electron channel: low statistics \rightarrow "penalty" for using the "probe B"

- In Run 3 we improved the strategy:
 - -- Two parking samples used (one for muons/ one for electrons)
 - -- Refined electron quality for HLT
 - -- Expecting large increase in statistics
 - -- Analysis on-going

Summary

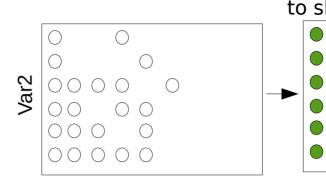

- CMS pursuing a very ambitious B Physics program

- First R_{κ} result using 2018 data proves the robustness and adaptability of the CMS detector, trigger and software

- -- We improved triggering strategy in Run 3
- -- Expecting large increase in statistics of $B \rightarrow eeK$

Public analysis summary is posted here: <u>BPH 22-005</u>

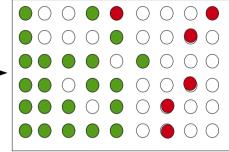
Stay tuned for more!



Preselection

CMS

Adaptive grid search:

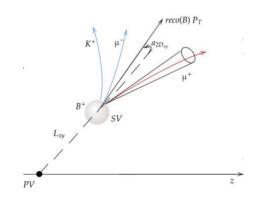

- Every variable is a dimension
- Scan variables (grid points)
- Take into account previous searches before generating a point
- Find optimal, according to some metric(s)
- Computing resources reduced by ${\sim}75\%$ wrt to standard grid search

Step1: Generate points

Var1

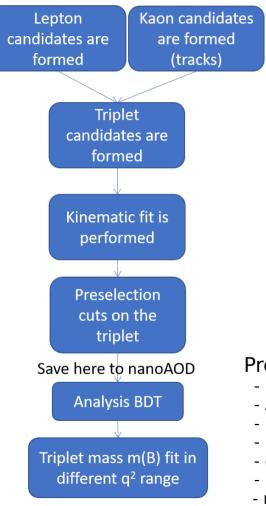
Step2: use previous result to skip useless points

Generated nowPrevious generation


Excluded

Preselection for µµK:

- p_T(B) > 3 GeV
- $\Delta z(\text{trg} \ \mu, \text{track}/\mu 2) < 1.0 \text{ cm}$
- $p_T(track) > 1 \text{ GeV}$
- $L_{xy}/\sigma > 1$
- $-\cos{(\alpha)} > 0.90$
- Prob > 10⁻⁵
- m(K, μ) > 2 GeV [anti-D^o]


Preselection for eeK:

- Δz (trg μ , track/e) < 1.0 cm
- p_T(e2) > 1.0 GeV
- $-\cos(\alpha) > 0.95$
- Prob > 10⁻⁵
- m(K,e) > 2 GeV [anti-D^o]
- $d_{3d} < 0.06$
- ID (e1) > -2
- ID (e2) > 0

B candidate reconstruction

G. Karathanasis

A practical problem: Running on 10¹⁰ events needs a lot of storage, time and computing power

Code strategies:

Apply cuts as quickly as possible in every step of the reconstruction
 Move time consuming processes to the end of the chain

Algorithm:

- Select leptons of opposite sign and create the common vertex
- Combine with a track (Kaon mass assigned)
- Kinematic Fit to a common vertex

Preselection:

- Adaptive grid search approach used
- Cut values are different for $\mu\mu K$ and eeK

Preselection for $\mu\mu K$:

- p⊤(B) > 3 GeV
- Δz (trg μ , track/ μ 2) < 1.0 cm
- p_T(track) > 1 GeV
- $L_{xy}/\sigma > 1$
- cos (α) > 0.90
- Prob > 10⁻⁵
- m(K, μ) > 2 GeV [anti-D^o]

Preselection for eeK:

- $\Delta z(trg \mu, track/e) < 1.0 cm$
- p_T(e2) > 1.0 GeV
- cos (α) > 0.95
- Prob > 10⁻⁵
- m(K,e) > 2 GeV [anti-D^o]
- d_{3d} < 0.06
- ID (e1) > -2
- ID (e2) > 0

q² range [GeV]	Branching fraction $[10^{-8}]$
0-0.98	2.98 ± 0.25
1.1-2.0	2.15 ± 0.22
2.0-3.0	3.07 ± 0.25
3.0-4.0	2.54 ± 0.23
4.0-5.0	2.48 ± 0.24
5.0-6.0	2.53 ± 0.26
6.0-7.0	2.51 ± 0.23
7.0-8.0	2.35 ± 0.25
11.0-11.8	2.03 ± 0.22
11.8-12.5	1.80 ± 0.19
14.82-16.0	1.55 ± 0.14
16.0-17.0	1.58 ± 0.15
17.0-18.0	2.11 ± 0.16
18.0-19.24	1.40 ± 0.12
19.24-22.9	0.53 ± 0.07
	$\begin{array}{c} 0-0.98\\ 1.1-2.0\\ 2.0-3.0\\ 3.0-4.0\\ 4.0-5.0\\ 5.0-6.0\\ 6.0-7.0\\ 7.0-8.0\\ 11.0-11.8\\ 11.8-12.5\\ 14.82-16.0\\ 16.0-17.0\\ 17.0-18.0\\ 18.0-19.24 \end{array}$

The Compact Muon Solenoid detector

More information in the <u>TDR</u>	Om m Key: Muon Electror Charge Hadron (e.g. lion) Neutral Hadron (e.g. Neutron) Photon G AT Silicon Tracker Ele tromagnet clorimeter	2m 3m 4m 4m 1000000000000000000000000000000000000	Sm 6m 7m	
Tracker: - Pixels in the core - Silicon strips around - In 2017 an extra inner layer added - Total 14(15) layers in Barrel(endcaps) - Reconstructs the trajectory of charged particles - Excellent measurement of position	 ECAL: Homogeneous calorimiter Lead tungstate (PbWO) scintillator 61,200 crystals in barrel 1,700 crystals in endcap Measures the energy of e and γ Very good energy resolution 	 HCAL: Heterogeneous calorimiter Interleaved heavy material with scintillator layers Measures the energy of hadrons Indirect measurement of non-interacting particles (like ν) 	Magnet: - Central device - Large solenoid magnet - Field up to 4T - Bends charged particles to measure their momentum	 Muon: Position exploits the penetration of muons Very clean signatures Gaseous detectors of three types Drift tubes (barrel), CSC (endcap), RPC (barrel+endcap)
G. Karathanasis		Introduction		44

44

$\cos \alpha_{3D}$	Cosine of the angle between the momentum
	vector of the B ⁺ candidate and the vector con-
	necting the PV and SV
$p(\mathbf{B^+ vtx})$	Probability of the SV kinematic fit
L_{xy}/σ_{xy}	Significance of the SV displacement in the
0 0	transverse plane with respect to the PV
$p_{\mathrm{T}}(\mathrm{B}^+)$	Transverse momentum of the B ⁺ candidate; in
	the electron channel it is divided by $m_{\rm K^+e^+e^-}$
$p_{\rm T}({\rm K}^+)$	Transverse momentum of the K ⁺ candidate; in
	the electron channel it is divided by $m_{\rm K^+e^+e^-}$

$\min \Delta R(\mu, \mathbf{K}^+)$	$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ distance between the
	K ⁺ candidate and the closest muon
$\min \Delta z(\mu, \mathbf{K}^+)$	Δz distance between the points of origin of the
	K ⁺ candidate and the closest muon along the
	beam axis direction
$Iso(\mu_{lead})$	PF isolation for the $p_{\rm T}$ -leading muon, defined as a scalar $p_{\rm T}$ sum all PF candidates, excluding
	the muon itself, within $\Delta R < 0.4$ of the muon and corrected for PU

BDT eeK exclusive variables

 $p_{\rm T}({\rm e}_{1,2})m_{{\rm K}^+{\rm e}^+{\rm e}^-}$ $\Delta z(e_{1,2}, K^+)$ $|d_{3D}(K^+, e^+e^-)| / \sigma_{|d_{3D}(K^+, e^+e^-)}$ $\Delta R(e^+,e^-)$ $\Delta R(e_{1,2}, K^+)$ $|\mathbf{p}(\mathbf{e}^+\mathbf{e}^-)\times\mathbf{r}| - |\mathbf{p}(\mathbf{K}^+)\times\mathbf{r}|$ $|\mathbf{p}(\mathbf{e}^+\mathbf{e}^-)\times\mathbf{r}|$ +

 $ID(e_{1,2})$

 $I_{\Delta R=0.4}^{\rm rel}({\rm e}_1/{\rm e}_2/{\rm K}^+)$

Transverse momenta of the two electron candidates, divided by the invariant mass of the B⁺ candidate

Longitudinal distance between the points of origin of each electron and the kaon Kaon 3D impact parameter significance with respect to the dielectron vertex ΔR between the two electrons ΔR between each electron and the kaon

Asymmetry of the momentum of the dielectron system and that of the K^+ momentum with respect to the B⁺ candidate trajectory, where **r** is a unit vector connecting the PV and SV Electron ID BDT score for each of the two electrons

Relative track-based isolation of e_1 , e_2 , and K⁺ candidates, respectively, defined as a scalar p_T sum of all additional tracks in a $\Delta R < 0.4$ cone around the candidate, divided by the candidate's p_T