CHART Collaboration

Lenny Rivkin

PSI and **EPFL**

Balsthal

www.chart.ch

Swiss Accelerator Research and Technology

CHART Applied Superconductivity

FUTURE

CIRCULAR

LIDER

- "CHART, the Swiss Center for Accelerator Research and Technology, was founded to support the future oriented accelerator project Future Circular Collider (FCC) at CERN and the development of advanced accelerator concepts in Switzerland beyond the existing technology. [...] The high field magnet R&D has strong synergies with PSI projects [...]"
- ~50% of the effort directed to Applied Superconductivity for accelerators.

PSI: MagDev FCCee HTS4

ETHZ: MagRes MagComp MagNum MagAM FCCee CPES

UniGE WireDev HFM WireChar

Bernhard Auchmann

Page 2

• Topics and FTEs of ongoing **HFM projects** in CHART:

Name	🖵 Institute	Description	🖵 FTE	🚽 FTE 🗖 % Suisse National Funds 🚽		
MagAM	ETHZ	Additive manufacturing for coil components		1	100	
MagComp	ETHZ	Coil composite characterization and constitutive modeling		1	100	
MagNum	ETHZ	Model-based systems engineering for magnets		1	100	
MagRes	ETHZ	Crack-resistant resin development		1	51	
MagDev1	PSI	SC magnet development		8	73	
MagDev2	PSI	SC magnet development		8	54	
WireChar	UniGE	SC wire and tape characterization		1	50	
WireDev	UniGE	Nb₃Sn wire development		3	53	
			Tot 2	4		

- FCC Feasibility Study and other CHART projects:
 - FCC / LHC Lumi
 - FCCee Beam Dynamics Simulation
 - FCChh Stability
 - FCCEe SPIN POL
 - FCCee Lumi
 - Muon Collider Feasibility Studies
 - FCCee Injector
 - FCC Geodesy
 - FCCee CPES cryogenic power supply development (1 FTE)
 - FCCee HTS4 HTS Short Straight Section Demo for FCCee (4 FTE)
 - HTS Bulk Undulator bulk REBCO undulator technology (2 FTE)
 - FCC Geology 3D Model

Bernhard Auchmann Page 3

CHART 2 Projects

	2019	2020	2021	2022	2023	2024	2025	2026
	ONI	D N O S A L L M A M I L S O N C	JIMAMJJASOND	JIMAMJJASOND	JIMAMJJASOND	JIMAMJIASDND	J I M A M J J A S O N D	JIMAMIIASDND
WireDev		Supply of experimental wires	Supply of proto	type wires from the	Supply of improved Final	report		
Nb3Sn Development			tirst j		prototype wires			
		First second second section the		Third annual second as all		the Firstment		
2 WireChar		campaign	measurement campaign	measurement campaign	measurement campa	inc Final Teport		
		Carrier C	> • °	•	• •	ъ. 🔶 🔶		
and a second		Project start Developm	ert Development	ew epoxy systems	Mechanical characterisation	Writing thesis		
3 Resins (MagRes)		experimen	ntal		and constitutive modelling	and report		
		techniqu	Es 🔹	la automa Cambalana				
4 HTS Bulk Undulator		Signature con	tract LSS End short samp	ne program - Cambridge	Ist cold test of End of	tardwore End of the Test	& Optmisation of the HTSU	
4 HTS BUIK UNdulator		with Perm	hiab Derivery of the	HTSI @ PSI A	▲ (LSS+HTSI) ◆	sioning 🔹	•	
		Middle and take and him	Basm hassis hiss corrections		INStart Einst			
5 FCC LHC-Lumi		correction startegy	in operational scans	Data analysis	nalysis Benertine			
		conceton starceby	¢ •		♦			
		Laboratory Decision of th	e technology demonstrator	Design and Conceptual	eports,			
6 MagDev1		building		Construction Design	Final			
		finished 🔷 🔶 🔷	•	BigBOX Demo	teprane e			
-		Experimental	Concept Digital On	timization of Adaptive Enspacers	Final Report			
7 MagAM		Investigation in	Workflow V1 Ac	besive_oints				
8 FCChh stability		Develop FCC-hh Sync	hrotron raciation effects and coupling	to Integration of FCC-nh	Benchmark to LHC RUN3	Reporting:		
,						POC-EE CRUTT		
		Physics	design positron	RF module design		Installation P. Cubed	Report on the positron source	
9 FCCee Injector		sou roe ar	nd capture system	and costs	CDR+CDR+_		P_Cubed experiment	2
			ready 🛇 🔸	• • •	\diamond	↓	Extension	
FCCee-beam dynami	cs	Codes Review an	d FW strategy 1st FW with	basic modules Integ	ration of Optics + BB modules	Simulation campaign for	Reporting:	~
10 simulations					+ multi-IP stucies	FCC-ee design	FCC-ee CDR++	
		\	Surface encodesis	Call	bration,	Integration of a		
11 ECC Geodesy			reference network mo	del for the ECC region test	facility of Gravity field mode	Is 3D gravity field Dyn	amic gravity field	
			◇ ◆	♦ the e	suipment 🛇 🔇	e ^{model} e	+	
		Prelia	ninary report 3D mode	Reports				
12 Geology 3D model		ofhi	gh y critical building					
			areas	• •				
			Framework architecture Red	uced vector-potential REBC	0 workflow			
13 MagNum			and Nb35n workflow tools	FEM software and t	framework			
			•	-			and an a family a	
14 Muon Colliders Feasi	bility			Impecance model of r	nachine Develop theory and mo	el for Extensive numerical simu	ations for the Propose opti-	mai prio acci
Studies					effects in matter		 mitigation poss 	bilities 🔶
and an and a second second				Code and theor	Preliminary Inter	ation to the Software	xtensive simulation Propose on	erational
15 FCC-ee SPIN-POL				benchmark	FCC ee	Framework C	ompaign for FCC-ee scenarios fi	prenergy
	1				simulations		cases 🔶 calibration mo	asurements 🔶
				Preparatio	h of 10- Characterisation of the finite	anisotropic		
16 MagComp				Rutherford	cables Apple an sotropic mechanica	mechanical implomentation		
					Beam	hchaviour	eration with	
17 ECCop HTS4				Concer	Subscale Testing Radiation	Management, Reports, Eccee Feas	ibility Study,	
				- CI	Enabling	Technologies Prototy	e Mocule 🔿 🔶	
				Comprover	Top Prosteriore	Figal		
18 FCCee CPES				orequalification	Eval. Demonstrator	Demonstrator		
					$\diamond \diamond \diamond \diamond \diamond$	◇◆	the second second second second second	
Distriction of the				Complete Collider	Lifetime Final Focus	IP Tuning Knobs Realistic S	mulations Report on the Cra	b-Waist Set CHART
19 FCCee Lumi				Beam Optics 0	ptimisation Sensitivity	& Lumnosity of IP Tuni	ig Process Tuning Scheme Up	A ignment report
有效的变形,通过使用的变形 。					 Anaiysis 	Related Signals	a Performance	

Originally planned milestones

Extension

Currently planned milestones
 Project delay (main y because of COVID)

+ MagDev2, MagMu (-> 40T HTS solenoid for muon collider, HE MuCol), MagNum2

CHART II commitments & spending (Stand 7.3.2023)

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera

Confederaziun svizra

(Ĵ) ETH-RAT

SYNOPSIS OF THE 2021 ECFA DETECTOR RESEARCH AND DEVELOPMENT ROADMAP

by the European Committee for Future Accelerators Detector R&D Roadmap Process Group

Accelerator R&D for future colliders 6

FCC integrated program

comprehensive long-term program maximizing physics opportunities

FUTURE

CIRCULAR COLLIDER

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option
- highly synergetic and complementary programme boosting the physics reach of both colliders (e.g. model-independent measurements of the Higgs couplings at FCC-hh thanks to input from FCC-ee; and FCC-hh as "energy upgrade" of FCC-ee)
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

Needs long term commitment, good roadmap!

CHART: High Field Magnets

- outstanding team effort on a new type of Canted Cosine Theta, high field magnet
- the first magnet from PSI and very fruitful collaboration with LBNL colleagues.
- eventually tested at CERN in Nov 2022: **10.1 T in the bore at 1.9 K**; 9.9 T at 4.5 K.

MagDev Laboratory

Douglas Araujo Engineer LTS

Jaap Kosse Engineer ReBCO

Colin Müller Mechanic LTS

Henrique Rodrigues Process Engineer ReBCO

Dmitry Sotnikovs Design Engineer ReBCO

André Brem *Material Scientist*

Thomas Michlmayr CAD, Technical Design Page 9

CHART has demonstrated rapid entry into the High Field Magnet R&D

Recent difficulties (degradation issues) with the HL-LHC high field magnets development point to the need to re-examine some of the basics

material science input may be urgently needed to understand the conductor robustness under extreme transverse magnetic pressure and longitudinal forces

CHART partners have launched a wide front of such projects

Test facilities, allowing for a rapid turn-around of small samples

CHART: Magnet technology development High Temperature Superconductor (HTS)

B.Auchmann & CHART magnet team

- ReBCO conductor
- 18.2 Tesla solenoid field
- Cryogen free cooled @ 12K

 → makes s.c. technology available for smaller & cost efficient accelerators
 → cryogenic efficiency much improved

→ Applications for light sources and neutron scattering (recent R'Equip)

HTS superconducting magnet technology undulators

Using bulk HTS material: has reached 2 Tesla for very short period magnets Put the structure into a solenoid magnet, cool it and trap the field

Cooling @ 10T / Solenoid @ 0.0T / 10.0K

HTS Magnet technology developments:

- developments for fusion (Tokamak Energy Ltd., UK)
- HTS based undulators for light sources
- HTS based low power consumption magnets

Cost (A.U./ kA m)

CHART 2025 - 2028

The present CHART-2 funding is until 2024. Main lines of development beyond 2024:

- Future CERN projects: FCCee and FCChh
- High Field Magnets
- High-gradient RF: positron source
- Photon science applications: HTS magnets
- High-gradient plasma and laser:

light sources and compact accelerators

- Muon Colliders: beam stability studies, magnets
- Energy efficient accelerators, ERL options

Swiss Accelerator Research and Technology

CHART Roadmap

ACCELERATOR SCIENCE AND TECHNOLOGY RESEARCH AND DEVELOPMENT

January 18, 2022

CHART/RM/02

Collaborating international partners of CHART include:

- <u>TU Twente</u>, Enschede, Netherlands
- <u>TU Darmstadt</u>, Germany
- <u>USMDP</u> Magnet Development Program, Berkeley, USA
- <u>University of Cambridge</u>, UK
- <u>LEAPS</u>, League of European Accelerator based Photon Sources
- <u>BNL</u>, Brookhaven National Laboratory, USA
- <u>KEK</u>, High Energy Accelerator Research Organization, Tsukuba, Japan
- <u>IJCLab</u>, Laboratoire de Physique des 2 infinis Irène Joliot-Curie, Orsay, France
- <u>INFN Frascati</u>, Italy
- <u>SLAC National Accelerator Laboratory</u>, Menlo Park, USA
- <u>University of Oxford</u>, UK
- <u>FERMILAB</u>, Fermi National Accelerator Laboratory, USA
- <u>RIKEN SPring-8 Center</u>, Japan
- <u>Kyoto University</u>, Japan
- <u>ESRF</u>, European Synchrotron Radiation Facility, Grenoble, France

Thank you