

Established by the European Com

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

GERDA AND LEGEND

LAURA BAUDIS UNIVERSITY OF ZURICH

CHIPP ROADMAP WORKSHOP

BALSTHAL, JANUARY 18–19, 2024

MAIN AIM OF THE LEGEND EXPERIMENT

- Determine the fundamental nature of neutrinos Majorana versus Dirac fermions
- Search for the 0vββ-decay of ⁷⁶Ge: observe the two final-state electrons (expect sharp peaks at Q-value of the decay)
- Essential for a discovery: ultra-low background level & excellent energy resolution & high efficiency to observe the two electrons (as demonstrated in GERDA and MAJORANA)

$$^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^- \qquad \Delta L = 2$$

WHY A 76-GE EXPERIMENT?

High Q-value, high efficiency, highly radio-pure

- o ⁷⁶Ge enrichment to > 90% possible
- Excellent energy resolution (0.1% FWHM), event topology

FINAL RESULTS FROM PREVIOUS GERMANIUM EXPERIMENTS

$$\Gamma^{0\nu} = \frac{\ln 2}{T_{1/2}^{0\nu}} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{|m_{\beta\beta}|^2}{m_e^2}$$
$$|m_{\beta\beta}| = \left|\sum_i U_{ei}^2 m_i\right|$$

MAJORANA at SURF

27.2 kg of 88% enriched ⁷⁶Ge crystals 2.5 keV FWHM at 2039 keV* (0.12%)

64.5 kg y exposure; PRL 2023

 $T_{1/2} > 8 \times 10^{25} \text{ y} (90\% \text{ CL})$

 $*Q_{\beta\beta} = 2039.061 \pm 0.007 \text{ keV}$

GERDA at LNGS

35.6 kg of 86% enriched ⁷⁶Ge crystals in liquid argon

3.0 keV FWHM at 2039 keV*

127.2 kg y exposure: PRL 125, 2020

T_{1/2} > 1.8 x 10²⁶ y (90% CL)

LEGEND: A TWO-PHASE APPROACH

- LEGEND-200 (in upgraded GERDA infrastructure at LNGS, Hall A)
- LEGEND-1000, in Hall C of LNGS

LEGEND-200

Taking science data with 142 kg of HPGe detectors since early 2023

Background goal: 0.6 events/ (FWHM t y)

LEGEND-1000 CD1 review phase First data ~ 2030 Background goal: 0.025 events/ (FWHM t y)

THE LEGEND COLLABORATION

270 scientists55 institutions11 countries

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

THE LEGEND-1000 EXPERIMENT

Recommended in the APPEC Mid-Term Roadmap Update (2023) and in The 2023 Long Range Plan for Nuclear Science in the US

10³

RECOMMENDATIONS:

APPEC strongly supports the CUPID and LEGEND 1000 double-beta decay experiments selected in the US-European process and endorses the development of NEXT. APPEC strongly supports fully exploiting the potential of the KATRIN direct neutrino mass measurement and the development of a new generation of experiments beyond KATRIN.

a graphic currently in development. The final printed plan is intended to contain a different image.) [26].

APPEC Roadmap Update

NS Long Range Plan

10⁴ Sensitive exposure [mol yr] 105

LEGEND-200 STATUS

- Installed underground at LNGS
- Initial commissioning run with 60 kg payload (28 HPGe detectors) + liquid argon veto + muon veto
- Subsequent commissioning with 142 kg of Ge detectors, start of physics run in early 2023
- Goal: science run for one year, then install additional detectors for 200 kg total
- Overall goal: 5 years runtime
 - Discovery sensitivity $T_{1/2} > 10^{27}$ yr (99.7% CL)
 - \odot m_{$\beta\beta$} < 33 71 meV

Detector

UZH CONTRIBUTIONS

- Four new source insertion systems, with four custom-made ²²⁸Th sources/unit: weekly calibrations of the HPGe diodes
- Liquid argon instrumentation
- HPGe detector characterisation at HADES underground lab in Belgium

UZH CONTRIBUTIONS

- Gamma and neutron rates of the new calibration sources with our HPGe and Lil(Eu)detectors at LNGS
- Liquid argon instrumentation
- HPGe detector characterisation at HADES underground lab in Belgium

Calibration sources for the LEGEND-200 experiment, L. Baudis, G. Benato, E. M. Bond, P.-J. Chiu, S. R. Elliott, R. Massarczyk, S. Meijer, Y. Müller, arXiv:2211.05026 [physics.ins-det], accepted in JINST

Calibration of the Lil(Eu) detector

Spectra from the LEGEND-200 sources

 $\phi = (4.27 \pm 0.06_{\text{stat}} \pm 0.92_{\text{sys}}) \times 10^{-4} \text{n}/(\text{kBq} \cdot \text{s})$

UZH CONTRIBUTIONS

- Four new source insertion systems, with four custom-made ²²⁸Th sources/unit: weekly calibrations of the HPGe diodes
- Liquid argon instrumentation
- HPGe detector characterisation at HADES underground lab in Belgium

Cryostat

liquid

argon

filled with

WLSR coated in situ with TPB

R&D published in: G.R. Araujo, L. Baudis, N. McFadden, P. Krause, S. Schönert, V. H. S. Wu, Eur.Phys.J.C 82 (2022) 5, 442

Optical fibres (coated with TPB), coupled to SiPMs to detect the argon scintillation light

UZH CONTRIBUTIONS

- Four new source insertion systems, with four custom-made ²²⁸Th sources/unit: weekly calibrations of the HPGe diodes
- Liquid argon instrumentation
- HPGe detector characterisation at HADES underground lab in Belgium

- Test setups at HADES:
 - Determine depletion voltage (with 60Co) and energy resolution (with 228Th)
 - Determine the active volume (with 133Ba)
 - Typical thickness of "dead-layer" due to n+ contact: ~ 1 mm

Dead-layer study with ¹³³Ba source

THE LEGEND-1000 EXPERIMENT

- What would a discovery look like?
 - > Due to excellent energy resolution ($\sigma/E \sim 0.05\%$) : no peaks near the ROI
 - Background measured in situ, no reliance on modelling

13

UZH MAIN RESPONSIBILITIES IN LEGEND-1000

- Coordination of the production and characterisation of enriched ⁷⁶Ge detectors (coleading HPGe Detector Production Task group, together with UNC)
- Design, construction and operation of new calibration systems (co-leading Calibration Task Group, together with LANL)
- Characterisation of custom-made ²²⁸Th sources in terms of γ- and neutron rates (with HPGe and Lil(Eu) detectors operated by our group)
- Material screening with the HPGe detector (Gator) operated at LNGS by our group
- Instrumentation of liquid argon veto (together with TUM)
- R&D and design for the liquid argon veto, study PEN as alternative WLS (recently joined CERN neutrino platform)
- Provide weekly calibration parameters, detector stability etc; MC simulations, data analysis (also with respect to other BSM searches)

EXPECTED SENSITIVITY OF LEGEND

● LEGEND-200: 200 kg, 2.5 keV FWHM, 5 y, 1 tonne-y exposure, 0.5 events/(FWHM t y)

- T_{1/2} = 9.7 x 10²⁶y discovery (99.7% CL), 1.5 x 10²⁷y exclusion (90% CL)
- $m_{\beta\beta} \sim 27-64 \text{ meV}$

• LEGEND-1000: 1000 kg, 2.5 keV FWHM, 10 y, 10 tonne-y exposure, 0.025 events/(FWHM t y)

- T_{1/2} = 1.3 x 10²⁸y discovery (99.7% CL), 1.56 x 10²⁸y exclusion (90% CL)
- $\bullet \ m_{\beta\beta} \sim 8.5\text{-} 19.4 \ meV$

SUMMARY AND OUTLOOK

- GERDA: operated at LNGS until end of 2019; ultra-low background, excellent energy resolution: reached the then highest sensitivity to $0\nu\beta\beta$ -decay (T_{1/2} > 1.8 x 10²⁶ y) of any double beta decay experiment
- LEGEND-200 was constructed and commissioned at LNGS; physics data taking mode since early 2023 with 142 kg of detectors; remaining 60 kg to be installed after one year
- LEGEND-1000: pCDR published, CDR to define the detailed technical requirements and baseline being finalised; highest ranking from DOE Nuclear Physics Portfolio review; site decision in 2023: LNGS
- R&D and design efforts ongoing at UZH; UZH group co-leading two work packages (detector production and calibration), also involved in the liquid argon instrumentation and in material screening

THE LEGEND-1000 EXPERIMENT

- pCDR published in 2021, CDR in preparation (part of DOE CD1-3A process)
- Site selection: within 2023 (also part of DOE CD1 process)
- DOE Office of Nuclear Physics Portfolio review in 2021, results were available in 2022: ranking is LEGEND-1000 (8), nEXO (7), CUPID (6.4)
 - "NP continues to pursue the possibility, in collaboration with national and international partners, of a multi-experiment campaign capable of providing contemporaneous verification of any apparent observation of 0vββ. Should it not prove possible to implement multiple projects in the search of 0vββ, LEGEND-1000 would receive priority based on it receiving the highest ranking from the portfolio review panel."
- Discovery sensitivity: < 1 decay/(ton year)
- Ten-ton years of data to obtain a few counts

FINAL GERDA DOUBLE BETA DECAY RESULTS

- Measured T_{1/2} of the $2v\beta\beta$ -decay: (1.926±0.094) x 10²¹ y
- Background level: 5.2 x 10⁻⁴ events/(keV kg y) in 230 keV window around Q-value
- Lowest background in any double beta decay experiment (0.3 events expected in the ROI, Q_{ββ}± FWHM/2); full background model: GERDA collaboration, JHEP 03, 2020

19

LEGEND-1000 BACKGROUND PREDICTION

- ▶ Goal: 0.025 events/(FWHM t y) or ~1 x 10⁻⁵ events/(keV kg y)
- > Detailed MC background predictions (based on measured activities or upper limits)

LEGEND-1000 BACKGROUND PREDICTION

- ▶ Goal: 0.025 events/(FWHM t y) or ~1 x 10⁻⁵ events/(keV kg y)
- > Detailed MC background predictions (based on measured activities or upper limits)

LEGEND-1000 BACKGROUND PREDICTION

● Goal: 0.025 events/(FWHM t y) or ~1 x 10⁻⁵ events/(keV kg y)

• Detailed MC background predictions (based on measured activities or upper limits)

DETECTORS

• Weighting field:

• PPC (MAJORANA), BEGe (GERDA) and inverted coaxial (LEGEND) detectors

LEGEND-1000 WORK BREAKDOWN STRUCTURE

GERMANIUM IONISATION DETECTORS

- ▶ HPGe detectors enriched in ⁷⁶Ge
 - Source = detector: high detection efficiency
 - High-purity material: no intrinsic backgrounds
 - Semiconductor: $\sigma/E < 0.1\%$ at $Q_{\beta\beta} = 2039.061 \pm 0.007$ keV
 - High stopping power: β absorbed within O(1) mm

Neutrino 2020

BACKGROUND SUPPRESSION IN GERDA AND LEGEND

- Several handles:
 - Event topology + anti-coincidence between HPGe detectors + pulse shape discrimination + liquid argon veto

