Feebly Interacting Particles (FIPs): Introduction

> Gaia Lanfranchi (INFN-LNF)

CHIPP Roadmap Workshop – 19 January 2024

Clues for New Physics: Dark Matter

Atoms

In Energy chart they are 4%. In number density chart ~ 5 $\times 10^{-10}$ relative to γ

Dark Matter:

In Energy chart it is 23%.

We have no idea about DM number densities. (WIMPs $\sim 10^{-8}$ cm⁻³; axions $\sim 10^{9}$ cm⁻³. Dark Radiation, Dark Forces – Who knows!).

Lack of precise knowledge about nature of dark matter leaves a lot of room for existence of dark radiation, and dark forces – dark sector in general.

Clues of New Physics: origin of the neutrino masses and oscillations

 $SU(2)xU(1)_L$ singlet Right Handed Neutrinos responsible of the neutrinos' mass generation can have any coupling/mass in the white area, assuming an approximate $U(1)_L$ global symmetry

Large spectrum of possible masses & couplings

Clues of New Physics.... and the Feeble front.

A (very) limited list of examples

Dark Matter:

candidates \w mass from 10^{-22} eV (light feeble scalars) to 10^{20} GeV (black holes). \rightarrow FIPs: if DM is a thermal relic, then mass is restricted o(10) keV – 100 TeV: MeV-GeV DM requires light mediators

Neutrino masses and oscillations

explanation: RH neutrinos with masses from 10^{-2} eV to 10^{15} GeV . \rightarrow FIPs: If RHN have generic (feeble) Yukawa's + approximate U(1)_L, masses can be below EW scale.

Matter-antimatter asymmetry

hard to associate scale, solutions of many orders of magnitudes:

 \rightarrow FIPs: baryogenesis could occur via CPV relaxion-Higgs couplings;

 \rightarrow FIPs: baryogenesis could occur via leptogenesis via neutrino oscillations of RHN with masses below EW scale.

Naturalness problem: why M(Higgs) << M(Planck) ?

Symmetry-based solutions => TeV partners; → FIPs: relaxion => light feeble Goldstone bosons (ALPs)

Strong CP problem:

 \rightarrow FIPs: axion = light feeble Goldstone boson;

Why *Feebly-Interacting* Particles (FIPs)?

FIPs have (dimensional or dimensionless) effective couplings << 1

[The smallness of the couplings can be generated by an approximate symmetry almost unbroken, and/or a large mass hierarchy between particles (as data seem to suggest)]

<u>Fully complementary to high-energy searches.</u> Naturally long-lived.

The Quest for New Physics

Mass Scale

European Strategy for Particle Physics recommendations (2020)

"4. Other essential scientific activities for particle physics:

- a) The quest for dark matter and the exploration of flavour and fundamental symmetries are crucial components of the search for new physics.
- This search can be done in many ways, for example through precision measurements of flavour physics and electric or magnetic dipole moments, and searches for axions, <u>dark sector candidates</u> <u>and feebly interacting particles</u>.
- There are many options to address such physics topics including energy-frontier colliders, accelerator and non-accelerator experiments. <u>A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics</u> <u>Strategy</u>.

The Physics Beyond Colliders initiative at CERN

PBC funded with 4 MCHF/year (CERN MTP 2023-2028)

US P5 Report (December 2023)

the

Draft for Approval

Particle Physics Project Prioritization Panel High Energy Physics Advisory Panel December 7, 2023

Section 2.2, Recommendations:

Recommendation 3:

Create an improved balance between small-, medium-, and large-scale projects to open new scientific opportunities and maximize their results, enhance workforce development, promote creativity, and compete on the world stage.

In order to achieve this balance across all project sizes we recommend the following:

Implement a new small-project portfolio at DOE, Advancing Science and Technology through Agile Experiments (ASTAE), across science themes in particle physics with a competitive program and recurring funding opportunity announcements. This program should start with the construction of experiments from the Dark Matter New Initiatives (DMNI) by DOE-HEP (section 6.2).

b. Continue Mid-Scale Research Infrastructure (MSRI) and Major Research Instrumentation (MRI) programs as a critical component of the NSF research and project portfolio.

c. Support DESI-II for cosmic evolution, LHCb upgrade II and Belle II upgrade for quantum imprints, and US contributions to the global CTA Observatory for dark matter (sections 4.2, 5.2, and 4.1).

US Dark Matter New Initiatives (DMNI) Projects

Basic Research Needs for Dark Matter Small Projects New Initiatives

Summary of the High Energy Physics Workshop on Basic Research Needs for Dark Matter Small Projects New Initiatives October 15 – 18, 2018

https://science.osti.gov/-/media/hep/pdf/Reports/Dark_Matter_New_Initiatives_rpt.pdf

CONTENTS

0	NTENTS v
X	ECUTIVE SUMMARY vii
L.	INTRODUCTION1
2.	PRIORITY RESEARCH DIRECTIONS 10
	PRD 1: Create and detect dark matter particles below the proton mass and associated forces, leveraging DOE accelerators that produce beams of energetic particles
	Science Opportunities12
	Research Thrusts
	Impact
Γ	PRD 2: Detect galactic dark matter particles below the proton mass through interactions with advanced, ultra-sensitive detectors
	Science Opportunities17
	Research Thrusts
	Impact
	PRD 3: Detect galactic dark matter waves using advanced, ultra-sensitive detectors with emphasis on the strongly motivated QCD axion
	Science Opportunities23
	Research Thrusts
	Impact
3.	CROSS-CUTTING SCIENCE AND SYNERGIES
	Dark-Matter Discovery Case Studies
	Synergies with Other Programs
1.	PANEL REPORTS
	Accelerator Production Panel Report
	Current Status and Recent Theoretical and Technological Advances
	Experimental Opportunities and Challenges46
	Impact
	Direct Detection Panel Report
	Current Status and Recent Theoretical and Technological Advances
	Scientific Opportunities and Challenges55
	Ultralight Dark Matter Panel Report67
	Current Status and Recent Theoretical and Technological Advances
	Experimental Opportunities and Challenges71
	Impact

DM particles below the proton mass (accelerators)

DM particles below the proton mass (direct detection)

DM waves (axions, and the likes)

Dark Matter: a huge range of possible masses

80 orders of magnitude allowed for DM

...but only a narrow range for thermal equilibrium with SM bath at some point in the Early Universe:

for m(DM) < m(e):

DM is relativistic at BBN time and spoils light element yield

for m(DM)>100 TeV :

DM is overproduced unless unitarity is violated.

Search for light (MeV- GeV) DM at accelerators

Main current, and future accelerator-based experiments sensitive to light DM and related mediators at CERN, FNAL, SLAC, JLAB, KEK, MAINZ, Frascati, JPARC,....

	Experiment	lab	beam	particle yield/ $\mathcal L$	technique	portals	timescale	
	current							
	ATLAS [1382]	CERN	<i>pp</i> , 13-14 TeV	up to 3 ab^{-1}	visible, invis.	(1,2,3,4)	2042	
	Belle II [1219]	KEK	e^+e^- , 11 GeV	up to 50 ab^{-1}	visible, invis.	(1,2,3,4)	2035	
	CMS [1383]	CERN	<i>pp</i> , 13-14 TeV	up to 3 ab^{-1}	visible, invis.	(1,2,3,4)	2042	
	Dark(Spin)Quest [1256]	FNAL	p, 120 GeV	$10^{18} \to 10^{20}$	visible	(1,2,3,4)	2024	
	FASER [1052]	CERN	<i>pp</i> , 14 TeV	$150 {\rm fb}^{-1}$	visible	(1,2,3,4)	2025	
	LHCb [1384]	LHC	<i>pp</i> , 13-14 TeV	up to 300 fb $^{-1}$	visible	(1,2,3,4)	2042	
	MicroBooNE [1385]	FNAL	p, 120 GeV (NuMi)	$\sim 7 imes 10^{20} \ { m pot}$	visible	(2,4)	2015-2021	
	NA62 [1174]	CERN	K^+ , 75 GeV	a few 10 ¹³ K decays	visible, invis.	(1,2,3,4)	2025	
	NA62-dump [1386]	CERN	p, 400 GeV	$\sim 10^{18}~{ m pot}$	visible	(1,2,3,4)	2025	
	NA64 _e [1387]	CERN	e^{-}/e^{+} , 100 GeV	up to $1\cdot~10^{13}~e^-/e^+$	E, visible	(1,3)	< 2032	
	PADME [1300]	LNF	e^+ , 550 MeV	$5\cdot 10^{12} e^+$ ot	missing mass	(1)	< 2023	
	T2K-ND280 [1388]	JPARC	p, 30 GeV	10 ²¹ pot	visible	(4)	running	
	proposed							
	BDX [1389]	JLAB	e^- , 11 GeV	$\sim 10^{22}$ eot/year	recoil e	(1,3)	2024-2025	
	CODEX-b [1030]	CERN	<i>pp</i> , 14 TeV	$300 {\rm fb}^{-1}$	visible	(1,2,3,4)	2042	
	Dark MESA [1390]	Mainz	e^- , 155 MeV	$150\mu\mathrm{A}$	visible	(1)	< 2030	
	FASER2 [1068]	CERN	<i>pp</i> , 14 TeV	3 ab ⁻¹	visible	(1,2,3,4)	2042	
	FLaRE [1068]	CERN	<i>pp</i> , 14 TeV	3 ab ⁻¹	visible, recoil	(1)	2042	
	FORMOSA [1068]	CERN	<i>pp</i> , 14 TeV	3 ab ⁻¹	visible	(1)	2042	
	Gamma Factory [1391]	CERN	photons	up to $10^{25} \ \gamma$ /year	visible	(1,3)	2035-2038?	
	HIKE-dump [1392, 1191]	CERN	$p,400~{ m GeV}$	$5 \cdot 10^{19}$ pot	visible	(1,2,3,4)	<2038	
	HIKE-K ⁺ [1392, 1191]	CERN	$K^+, 75 { m GeV}$	10 ¹⁴ K decays	visible, inv.	(1,2,3,4)	<2038	
	HIKE-K _L [1392, 1191]	CERN	$K_L, 40~{ m GeV}$	10 ¹⁴ K decays	visible, inv.	(1,2,3,4)	<2042	
	LBND (DUNE) [1393]	FNAL	p, 120 GeV	$\sim 10^{21}~{ m pot}$	recoil e, N	(1,2,3,4)	< 2040	
	LDMX [1271]	SLAC	e^- , 4,8 GeV	$2\cdot 10^{16}$ eot	ø, visible	(1)	< 2030	
	M ³ [1394]	FNAL	μ , 15 GeV	$10^{10} (10^{13}) \text{ mot}$	Þ	(1)	proposed	
	MATHUSLA [1395]	CERN	<i>pp</i> , 14 TeV	3 ab^{-1}	visible	(1,2,3,4)	2042	
	milliQan [1070]	CERN	<i>pp</i> , 14 TeV	$0.3-3 \text{ ab}^{-1}$	visible	(1)	< 2032	
	MoeDAL/MAPP [1396]	CERN	<i>pp</i> , 14 TeV	$30 {\rm fb}^{-1}$	visible	(4)	< 2032	
	Mu3e [1397]	PSI	29 MeV	$10^8 ightarrow 10^{10} \mu/{ m s}$	visible	(1)	< 2038?	
	NA64µ [1398]	CERN	μ , 160 GeV	up to $2 imes 10^{13}$ mot	ø	(1)	< 2032	
	PIONEER [1399]	PSI	55-70 MeV, π^+	$0.3 \cdot 10^6 \pi/s$	visible	(4)	phase I approved	
	SBND [1400]	FNAL	<i>p</i> , 8 GeV	$6 \cdot 10^{20} \text{ pot}$	recoil Ar	(1)	< 2030	
	SHADOWS [1401]	CERN	$p,400~{ m GeV}$	$5 \cdot 10^{19}$ pot	visible	(2,3,4)	<2038	
	SHiP [1402]	CERN	$p,400~{ m GeV}$	$2\cdot 10^{20}$ pot	visible, recoil	(1,2,3,4)	<2038	

FIPs 2022 Workshop Report arXiv: 2305.01715

Search for light (MeV-GeV) DM with direct detection experiments

Table 4-4: Technologies proposed for detection of sub-GeV dark matter. NR = dark matter coupling to nuclear recoil, ER = dark matter coupling to electron recoil, CE = dark matter coupling to collective excitations. These are grouped as short term (green), medium term (blue), and long term (magenta), with short term = 0-2 years, medium term = 2-4 years, and long term = > 4 years. We note that these time estimates are only approximate, and some medium-to-long-term efforts could see rapid technological improvement on a shorter timescale.

Technology	Signals	Near-term dark matter masses	Medium-to- longer-term dark matter masses	Readiness		
Cryogenic semiconductors	Phonons, charge	NR > 10 MeV ER > 1 MeV	NR > 1 MeV ER > 1 MeV	Ready for concept development		
Cryogenic superfluid	Phonons, light	NR > 10 MeV	NR > 1 MeV CE > 1 keV	Ready for concept development	sho	
Cryogenic crystalline scintillators	Phonons, light	NR > 100 MeV ER > 1 MeV	NR > 10 MeV ER > 1 MeV	Ready for concept development	rt te	
Charge-only semiconductors	Charge	ER > 1 MeV	ER > 1 MeV	Short-term R&D needed on readout, dark current	rm	
Charge-only noble liquids and gases	Charge	NR > 1 GeV ER > 1 MeV	NR > 100 MeV ER > 1 MeV	Short-term R&D needed on NR calibration, dark current		
Superheated/cooled liquids	Heat, light	NR > 100 MeV	NR > 100 MeV	Short-term R&D on NR calibration		
Polar materials	Phonons		NR > 1 MeV CE > 1 keV	Medium-term R&D needed on calorimetry	Mediu	
Diamond	Phonons		NR > 1 MeV	Medium-term R&D needed on calorimetry	lm to	
Molecular gas	Light		NR > 100 keV	Medium-term R&D needed on readout	erm	
Superconductor	Charge, Phonons		PH > 1 keV	Long-term R&D on calorimetry		
Graphene	Charge		ER > 1 MeV	Long-term R&D on readout	ο	
Dirac Material	Charge, light		CE > 1 keV	Long-term R&D on materials, calorimetry	ng te	
Magnetic bubble	Magnetic flux		NR > 100 keV	Long-term R&D on materials, readout	erm	

Innovative and cutting edge technologies involved

Search for light (MeV-GeV) DM with indirect detection experiments

Main experimental devices Sensitive to DM in MeV-GeV range Via hard x-rays or soft gamma rays signals

Fermi Large Area Telescope (LAT)

Lifetime: 2008 — present Energy: 20 MeV - 300 GeV Large FoV: 2.4 sr Excellent angular res: 0.1 deg@10 GeV

CGRO Compton Telescope (COMPTEL)

Lifetime: 1991 — 2000 Energy: 0.8 MeV - 30 MeV Large FoV: 1 sr Angular res: 1 deg

INTEGRAL Spectrometer (SPI)

Lifetime: 2002 — present Energy: 20 keV - 8 MeV Good energy res Angular res: 2.5 deg

Search for light DM with CMB/BBN

The Cosmic Microwave Background (CMB) from Planck satellite:

If DM annihilates during CMB era (370 000 years after Big Bang), some extra-energy is injected in the photon plasma during recombination. The CMB bounds are based on visible energy injection at T ~eV (4000 K), which re-ionizes the newly recombined hydrogen and thereby modifies the ionized fraction of the early universe.

DM at accelerators, direct detection, and in cosmology

A theoretical framework is key to interpret results and compare them across different fields

Scalar DM with Vector mediator

(a clear, predictive model to compare DD and accelerator-based experiment results).

Scalar DM with Vector mediator

(a clear, predictive model to compare DD and accelerator-based experiment results).

Scalar mediator going to visible final states Experimental bounds and projections for accelerator-based experiments:

A light scalar as a non-thermal bosonic DM condensate a simple but UV complete model, fully compliant with astroparticle & cosmology

Astroparticle, cosmology go deep inside in the "natural" region of parameter space covering 10 orders of magnitude in mass and 20 in coupling.

A light scalar as a non-thermal bosonic DM condensate a simple but UV complete model, fully compliant with astroparticle & cosmology

Clues of New Physics: origin of the neutrino masses and oscillations

Close connection with the physics of active neutrinos

In case of one generation the seesaw formula holds: $U^2 = v^2 F^2/m_N^2$

For $m_N{=}$ 2 GeV , $U^{\scriptscriptstyle 2}$ \sim 10 $^{\scriptscriptstyle -8}$

→ Yukawa coupling ~ 10^{-6} (like the electron...)

HNL searches: electron coupling

Fermion Portal: Heavy Neutral Leptons below/around EW scale

Prospects for FCC-ee : combination of data at the Z-pole (110 ab^{-1}), 2 m_W (7.5 ab^{-1}) and 240 GeV (5 ab^{-1}).

Source: FCC report, CERN-ACC-2018-0057 (based on Antusch et al., arXiv:1612.02728)

HNL-active neutrino mixing angles and active neutrino physics

The present status of neutrino oscillation experiments allows to do some quantitative analysis. One can use the statistical information about the light neutrino parameters gathered

in various neutrino oscillation experiments to obtain a **probability distribution for the U_a^2/U^2**.

In case of one generation the seesaw formula holds: $U^2 = v^2 F^2/m_N^2$

We cannot know absolute values of couplings to the three active neutrino generations but we can constrain the ratios.

Questions to drive the discussion during the parallel session tomorrow:

- How can we search for feebly interacting particles in colliders, fixed target projects, direct and indirect detection dark-matter experiments, including astroparticle and cosmology?
- ➢ Is there a way to think about these areas cohesively ?
- ➢ Is there a way we can put results coming from different areas onto the same plots in order to highlight motivated but still uncharted parameter regions and guiding new experimental proposals?
- Which is the status of these searches in the international landscape and which are the prospects in Europe and US (including the recent US P5 recommendations)?