

# Accelerating AI Applications in Environmental Sciences

Yuhan "Douglas" Rao, PhD (douglas\_rao@ncsu.edu) Cooperative Institute for Satellite Earth System Studies/NOAA NCEI

Rob Redmon (NOAA Center for AI), Eric Kihn (NOAA NCEI)

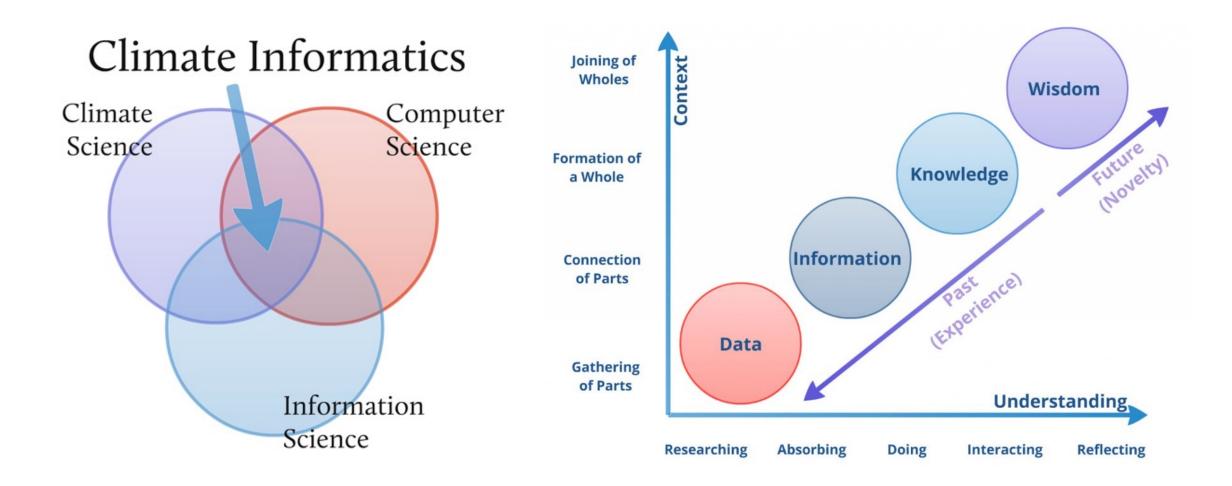
NOAA CENTER FOR ARTIFICIAL INTELLIGENCE



Climate Informatics



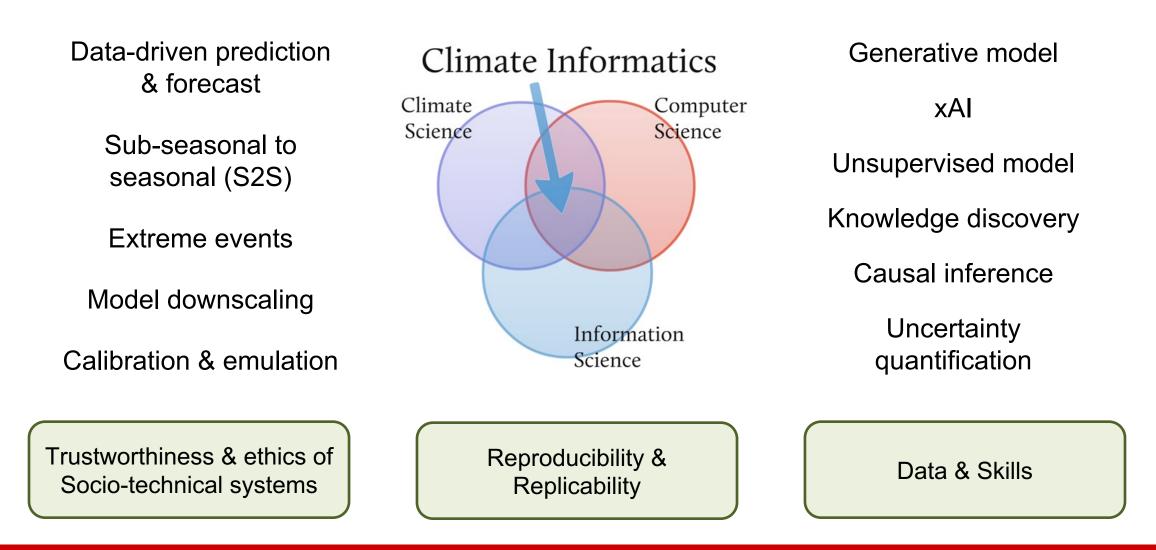
### **Climate Informatics**





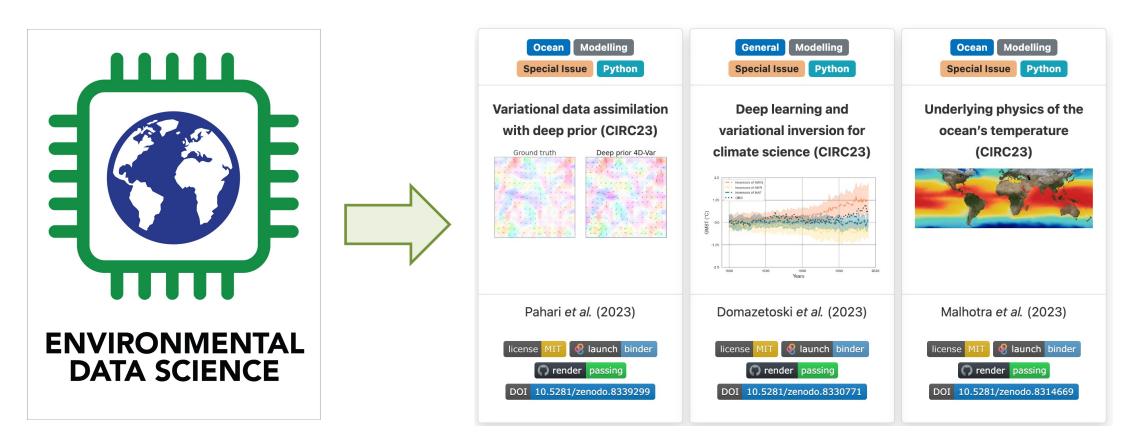
2

### **Climate Informatics 2023**





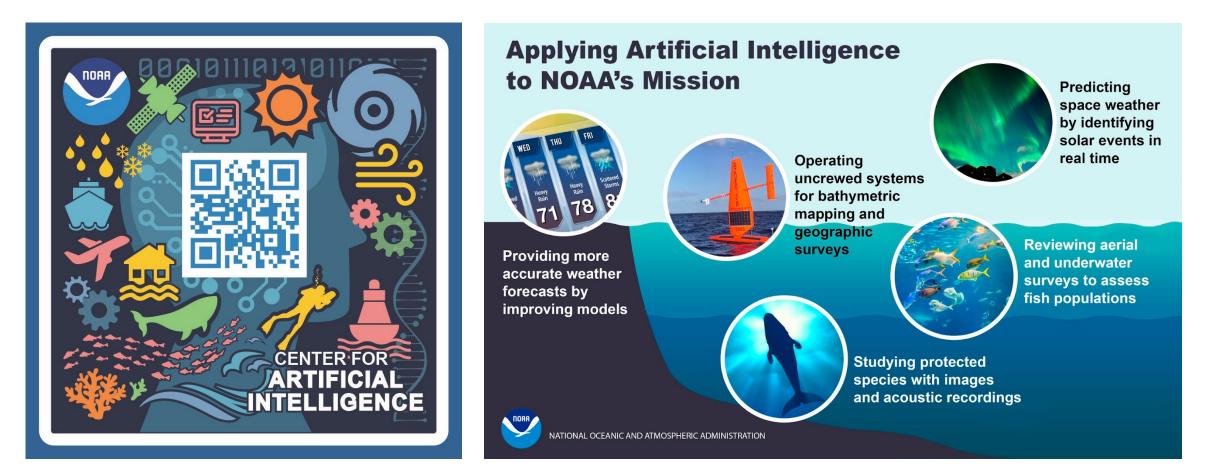
## **Climate Informatics Reproducibility Challenge**



From conventional scientific publication to computational notebooks with well documented reproducible workflows.



### Al in Environmental Sciences



NOAA Center for AI strives to benefit NOAA's mission by proliferating the use of responsible AI through coordinated development, engagement, and partnership.

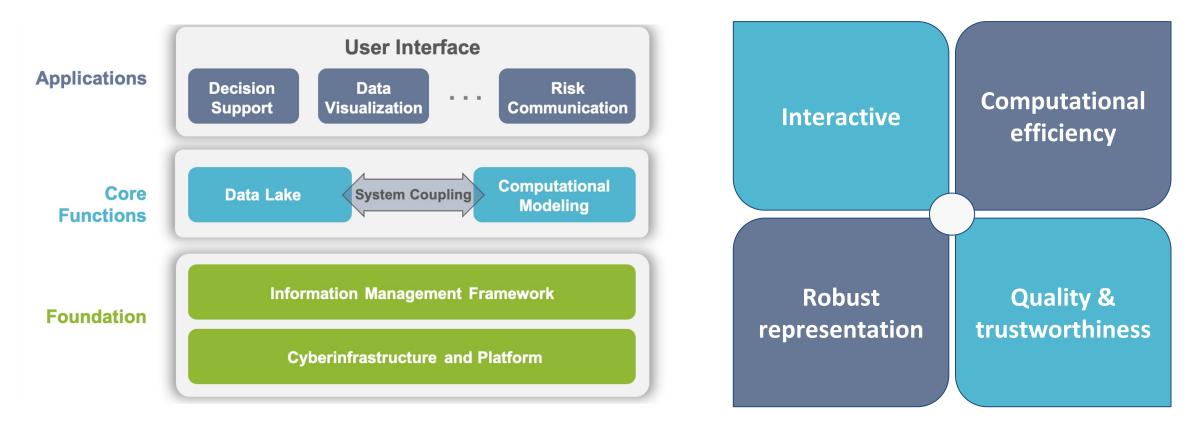


5

## 4<sup>th</sup> NOAA AI Workshop – Digital Twin Whitepaper

### **Core components**

### **Core features**





Rao et al., <u>https://doi.org/10.48550/arXiv.2306.11175</u>

## 5<sup>th</sup> NOAA AI Workshop

### AI Benchmarking Frameworks

#### **Order 1 requirements**

R1: Data available online without access restrictions

R2: Clear problem statement for meaningful task in atmospheric science

R3: Data input into high level open data science language provided

R4: Evaluation metrics defined analytically and in code

#### Order 2 requirements

R5: Simple example machine learning solution provided in code

R6: Visualisation and diagnostics provided in code

R7: Tests for physical consistency and explainability provided

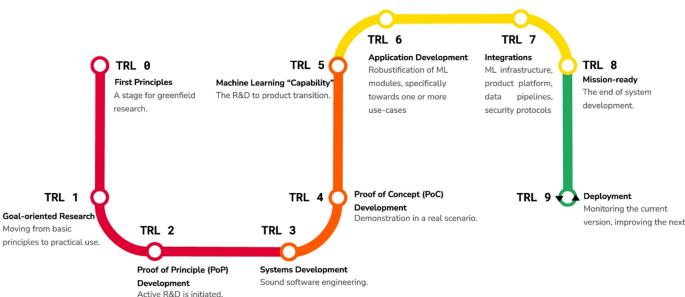
R8: Benchmarks for the computational performance provided

Dueben et al. (2022) <u>https://doi.org/10.1175/AIES-D-21-0002.1</u>

Facilitating R2X transitions for AI Research

Fig. 1: MLTRL spans research (red) through prototyping (orange), productization (yellow), and deployment (green).

From: Technology readiness levels for machine learning systems



Lavin et al. (2022): https://doi.org/10.1038/s41467-022-33128-9



### **Preliminary Take-aways**

*Identifying core use cases*: community-driven core use cases for AI benchmarking framework development including data, tools, use case specific metrics (beyond RMSE).

*Addressing the need of Al-ready data*: accessibility, quality, and documentation are critical for enabling benchmarking and R2X transitions.

**Socio- and Cyber-infrastructure**: efforts are needed to address the segmented infrastructures for AI R&D and social mechanisms to support community uptake of the benchmarking.

*Workforce and capacity development*: critical needs to scale up education efforts for both current and future workforces with the emphasis on diverse AI workforce.

**Evaluation & governance**: critical needs to develop use case aware metrics to objectively measure and monitor AI benchmarking frameworks.

*Ethics and risk management*: need to adopting a common framework to evaluate, measure, and address risks associated with AI applications.

