Final Cooling Lattice Design

Elena Fol

C. Rogers, D. Schulte, B. Stechauner, A. Latina, A. Grudiev

IMCC 3rd Annual Meeting
CERN, 12-15 March 2024
• Final Cooling: Overview and Baseline
• Previous Steps and Current work
• Integrating Realistic RF-systems
• Optimization methods
• Start-to-end Lattice Simulation in RF-Track
• Conclusions and Next Steps
Ionisation cooling (the reduction of occupied phase-space by muons): the only technique compatible with muon’s lifetime (2.2 μs), demonstrated by MICE collaboration.

Final Cooling Channel: reduction of transverse emittance on the cost of longitudinal emittance growth.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>3 TeV</th>
<th>10 TeV</th>
<th>14 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>10^{14} cm$^{-2}$s$^{-1}$</td>
<td>1.8</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>N</td>
<td>10^{12} Hz</td>
<td>5.3</td>
<td>14.4</td>
<td>20</td>
</tr>
<tr>
<td>f_r</td>
<td>Hz</td>
<td>4.5</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>P_{beam}</td>
<td>MW</td>
<td>7</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>ε</td>
<td>MeV m</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>σ_{ε/E}</td>
<td>%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>σ_{z}</td>
<td>mm</td>
<td>5</td>
<td>1.5</td>
<td>1.07</td>
</tr>
<tr>
<td>β</td>
<td>mm</td>
<td>5</td>
<td>1.5</td>
<td>1.07</td>
</tr>
<tr>
<td>ε</td>
<td>μm</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>σ_{xy}</td>
<td>μm</td>
<td>3.0</td>
<td>0.9</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Ionisation cooling: the only technique that works on the timescale of the muon lifetime

- Muons passing through a material → energy loss due to the interaction with absorber material
- Reduction of normalised beam emittance
- Re-accelerating the beam to restore the longitudinal momentum
Baseline Design and simulation tools

Baseline: MAP study

- Starting beam parameters:
 \[\epsilon_\perp = 300 \mu m, \epsilon_\parallel = 1.5 mm, \sigma t = 50 mm, \sigma E = 3.2 MeV \]
- High-field magnets 25—32 T, beam momenta ranging from 135- 70 MeV/c
- Achieved in previous studies*: \(\epsilon_\perp = 55 \mu m \), with \(\epsilon_\parallel = 76 \) mm, \(\Delta N_\mu = 50\% \)
- Target is \(\epsilon_\perp = 25 \mu m \): using 40 T solenoid and further optimization
Baseline Design and simulation tools

Baseline: MAP study
- Starting beam parameters:
 \[\epsilon_{\perp} = 300\mu m, \epsilon_{||} = 1.5\text{mm}, \sigma t = 50\text{mm}, \sigma E = 3.2\text{MeV} \]
- High-field magnets 25—32 T, beam momenta ranging from 135- 70 MeV/c
- Achieved in previous studies*: \(\epsilon_{\perp} = 55 \mu m, \) with \(\epsilon_{||} = 76 \text{ mm}, \) \(\Delta N_\mu = 50\% \)
- Target is \(\epsilon_{\perp} = 25\mu m: \) using 40 T solenoid and further optimization

First steps using ICOOL simulations:
- Python-wrapper to ease generation of input files and tracking results analysis
- Linear optics matching
- Transverse cooling using Liquid Hydrogen absorber
 - Studied transverse aspects only
Baseline Design and simulation tools

Baseline: MAP study
- Starting beam parameters:
 \[\epsilon_\perp = 300\mu m, \epsilon_\parallel = 1.5mm, \sigma t = 50mm, \sigma E = 3.2MeV \]
- High-field magnets 25—32 T, beam momenta ranging from 135- 70 MeV/c
- Achieved in previous studies*: \(\epsilon_\perp = 55 \mu m, \) with \(\epsilon_\parallel = 76 \) mm, \(\Delta N_\mu = 50\% \)
- Target is \(\epsilon_\perp = 25\mu m \): using 40 T solenoid and further optimization

First steps using ICOOL simulations:
- Python-wrapper to ease generation of input files and tracking results analysis
- Linear optics matching
- Transverse cooling using Liquid Hydrogen absorber
 - Studied transverse aspects only

Towards integrated Final Cooling design:
- RF-Track (developed by A. Latina): https://gitlab.cern.ch/rf-track/download
- Includes collective effects, relevant lattice elements (absorbers, stating wave RF-cavities, solenoids), Python and Octave interface
 - easy to combine with advanced optimisation algorithms
- Specific ionisation cooling effects have been recently added (multiple scattering, muon decays)
 - *Further presented studies are focused on RF-Track simulations (thanks to A. Latina)*

See Andrea’s talk tomorrow: https://indico.cern.ch/event/1325963/contributions/5828922/
Design optimisation strategy

I. Estimate **optimal momenta and absorber lengths** in every cell, with objective $\epsilon_\perp = 25 \mu m$.

- Provides **starting momenta** and **absorber lengths** for all cells

II. **Optics control**, ensure low beta-function in absorber by **optimizing solenoid field and matching coils**

- **Mitigates emittance blow up** in the fridge fields and **controls the optics in absorber** region

III. **Optimize acceleration and rotation** of the bunch after absorber (simplified RF model)

- Provides **drifts** and **rotation** “kicks” initial estimates for RF-system design

Focus of today’s talk

IV. Integrated **end-to-end simulation** of the complete cooling channel using RF-Track

- **Optimize a realistic RF system**: frequencies, phases, gradients to **control the longitudinal dynamics**
- Current Limitations
- Developed tools and methods
Design optimisation strategy

I. **Estimate optimal momenta and absorber lengths** in every cell, with objective $\epsilon_{\perp} = 25\mu m$.

- Provides **starting momenta** and **absorber lengths** for all cells

\[
\frac{dE}{ds} = 4eN_0 \varepsilon_{\perp} \gamma m c^2 Z \left[\frac{1}{\beta^2} \ln \left(\frac{2m c^2 \beta}{\Gamma(Z)} \right) - 1 - \frac{\delta}{2\beta} \right]
\]

\[
\frac{d\epsilon_{\perp}}{ds} = -\frac{\epsilon_{\perp}}{\beta^2} \frac{dE}{ds} + \frac{\beta_1 E_s^2}{2\beta^3 m c^2 L_R E}
\]

II. **Optics control**, ensure low beta-function in absorber by optimizing solenoid field and matching coils

- **Mitigates emittance blow up** in the fridge fields and **controls the optics in absorber** region

III. **Optimize acceleration and rotation** of the bunch after absorber (simplified RF model)

- Provides **drifts** and **rotation** “kicks” initial estimates for RF- system design

✓ Tracking simulations using **40T and optimised parameters** confirm the potential for **lower emittance**

Analytical: $\epsilon_{\perp} = 24\mu m$

Tracking: $\epsilon_{\perp} = 31\mu m$
Design optimisation strategy

I. Estimate optimal momenta and absorber lengths in every cell, with objective $\epsilon_\perp = 25\,\mu m$.

- Provides starting momenta and absorber lengths for all cells

\[
\frac{dE}{ds} = 4\pi N \frac{\rho^2 m c^2 Z}{2} \left[\frac{1}{\beta^2} \ln \left(\frac{2 m c^2 \beta^2}{f(Z)} \right) - 1 - \frac{\delta}{2\beta^2} \right]
\]

\[
\frac{d\epsilon_\perp}{ds} = \frac{\epsilon_\perp}{\beta^2 E} \frac{dE}{ds} + \frac{\beta_2 E_s^2}{2\beta^3 m c^2 L_R E}
\]

II. Optics control, ensure low beta-function in absorber by optimizing solenoid field and matching coils

- Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

III. Optimize acceleration and rotation of the bunch after absorber (simplified RF model)

- Provides drifts and rotation “kicks” initial estimates for RF- system design

✓ Tracking simulations using 40T and optimised parameters confirm the potential for lower emittance

\[
\epsilon_\perp, end = 268\,\mu m
\]

\[
\epsilon_\perp, end = 260\,\mu m
\]

Analytical: $\epsilon_\perp = 24\,\mu m$
Tracking: $\epsilon_\perp = 31\,\mu m$
Design optimisation strategy

I. Estimate optimal momenta and absorber lengths in every cell, with objective \(\epsilon_\perp = 25 \mu m \).

⇒ Provides starting momenta and absorber lengths for all cells

\[
\frac{dE}{ds} = 4\pi \alpha r_s^2 m_e c^2 Z \left(\frac{1}{\beta^2} \left(\frac{2 m_e c^2 \gamma^2}{I(Z)} \right) - 1 - \frac{\delta}{2\beta} \right)
\]

\[
\frac{d\epsilon_\perp}{ds} = -\frac{\epsilon_\perp}{\beta^2 E} \frac{dE}{ds} + \frac{\beta_1 E_s^2}{2 \beta^3 m_c^2 L_R E}
\]

II. Optics control, ensure low beta-function in absorber by optimizing solenoid field and matching coils

⇒ Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

III. Optimize acceleration and rotation of the bunch after absorber (simplified RF model)

⇒ Provides drifts and rotation “kicks” initial estimates for RF- system design

✓ Tracking simulations using 40T and optimised parameters confirm the potential for lower emittance

✓ Transverse emittance = 32 micron, Longitudinal emittance = 77 mm

✓ Problem: Transmission (only ~29%) => more acceleration, higher momenta at the start of last cells?
IV. Integrated end-to-end simulation of the complete cooling channel using RF-Track

- **Global optimization:**
 - would have **14 parameters** to optimize in each cell
 - Expected to need ~**14 cells in total**
 - Cell-by-cell approach, testing different optimization algorithms

- **Objective function:**
 \[\frac{\epsilon_\perp \epsilon_\parallel}{N_\mu} \]

- **Free parameters:**
 - Absorber (liquid hydrogen) thickness
 - Drift length
 - Number of accelerating RF cavities, rf phase
 - Number of rotating RF cavities, rf phase
 - B-field in RF region to match the field in the cooling cell and the change in momentum
Integrated Lattice Optimization: Methods

- **Optimization procedure:**
 - Run optimization for each cell, a few iterations
 - Create a surrogate model to estimate the initial parameters
 - Bayesian Optimization, BOBYQA

- **Input:** $\epsilon_{\perp,\text{start}}, P_{\perp,\text{start}}, \epsilon_{\perp}, \sigma_t, \sigma E, N_{\mu}$

- **Output:** $L_{\text{drift}}, N_{\text{rot}}, N_{\text{cav}}, \phi_{RF}, L_{\text{absorber}}, L_{\text{sol}}$

- **Fast design estimate**

- **Use as initial guess** for optimisation algorithms (optimal solution is found within fewer steps)

Peter I. Frazier: A Tutorial on Bayesian Optimization. arxiv:1807.02811

Py-BOBYQA: Derivative-Free Optimizer for Bound-Constrained Minimization
Integrated Lattice Optimization: Methods

- **Optimization procedure:**
 - Run optimization for each cell, a few iterations
 - Create a surrogate model to estimate the initial parameters
 - Bayesian Optimization, BOBYQA

 ➡️ Use as initial guess for optimisation algorithms (optimal solution is found within fewer steps)

 - **Input:** \(\epsilon_{\perp,\text{start}}, P_{z,\text{start}}, \epsilon_{\perp}, \sigma_t, \sigma_E, N_{\mu} \)
 - **Output:** \(L_{\text{drift}}, N_{\text{rot}}, N_{\text{cav}}, \phi_{\text{RF}}, L_{\text{absorber}}, L_{\text{sol}} \)

 ➡️ Fast design estimate

Example, cell 4: \(\epsilon_{\perp,\text{start}} = 170 \mu m \)

Target:

\(\epsilon_{\perp} = 150 \mu m, \sigma_t = 400 mm, \sigma_E = 2.0 MeV, N_{\mu} = 75\% \)

Simulated with parameters predicted by ML-model:

\(\epsilon_{\perp} = 149 \mu m, \sigma_t = 404 mm, \sigma_E = 3.5 MeV, N_{\mu} = 69\% \)

Optimiser, 150 steps, starting with predicted parameters:

\(\epsilon_{\perp} = 150 \mu m, \sigma_t = 280 mm, \sigma_E = 2.1 MeV, N_{\mu} = 71\% \)
Integrated Lattice Optimization: Methods

• How to **speed up** simulations-based design optimization?
 ▶ Surrogate models to replace slow-executing simulations
 (used for optics matching in ICOOL simulations)

• How to **estimate initial optimization parameters**?
 ▶ Surrogate models to provide optimizers with “warm start”
 ▶ Bayesian Optimization

• Robust **emittance estimation** during optimization?
 ▶ Clustering for detection of tails biasing the emittance calculation

More details were in presented at 4th ICFA Beam Dynamics Mini-Workshop on Machine Learning for Particle Accelerators:
"ML-assisted design of Final Cooling System for a Muon Collider"
Details on simulations setup

- **General layout**

 Example for cell 1:
 - Absorber thickness: 0.85 m
 - Solenoid length = 1.48 m

 ![Diagram](image)

- **Simulating RF-systems:**
 - SW cavity - model: pillbox, fixed length = 0.25 m
 - Rotating cavities: rf phase to be optimised to provide the energy spread minimising rotation (and partially acceleration)
 - Accelerating cavities: RF-Track routine to find the phase providing maximum acceleration

 \[f_{RF} \text{ according to } \lambda = \sigma_t/20, \quad G = 1.88 \sqrt{f_R F} \] (optimistic assumption for gradients, see IMCC report)
Beam parameters evolution inside a cooling cell

Cell 1, passing through liquid hydrogen absorber

- **Rotation and acceleration**

![Graphs showing beam parameters evolution](image-url)
Integrated Lattice Optimization: Current results

| Cell | \(LH_2 \) [m] | Drift [m] rot. | \(N_{RF} \) accel. | \(f_{RF} \) [MHz] | \(G \) [MV/m] | \(\phi_{RF,rot.} \) degrees | \(P_{z,start} \) [MeV/m] | \(\sigma E_{start} \) [MeV] | \(\sigma t_{start} \) [mm] | \(P_{z,end} \) [MeV/m] | \(\sigma E_{end} \) [MeV] | \(\sigma t_{end} \) [mm] | \(\epsilon_{||} \) [μm] | \(\epsilon_{\perp} \) [μm] | \(N \) [%] |
|------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|
| 1 | 0.85 | 0.3238 | 5 | 111.06 | 19.81 | -180 | 145.0 | 3.1 | 49.8 | 99.8 | 4.3 | 129.8 | 2.3 | 239.2 | 98 |
| 2 | 0.466 | 1.363 | 10 | 56.85 | 14.17 | 90 | 119.1 | 2.1 | 209.2 | 89.1 | 2.6 | 201.2 | 4.8 | 190.2 | 95 |
| 3 | 0.46958 | 1.363 | 10 | 56.85 | 14.17 | 90 | 118.5 | 4.0 | 284.8 | 88.5 | 4.0 | 394.9 | 6.4 | 157.3 | 90 |
| 4 | 0.4 | 2.5 | 9 | 40.13 | 11.9 | 51 | 113.1 | 5.7 | 819.5 | 87.5 | 3.7 | 362.8 | 12.5 | 133.3 | 83 |
| 5 | 0.3 | 1.8358 | 7 | 34.91 | 11.1 | -10 | 93.9 | 3.7 | 357.6 | 62.7 | 5.5 | 738.1 | 19.1 | 103.6 | 76 |
| 6 | 0.25 | 2.0 | 5 | 30.61 | 10.4 | -54 | 83.0 | 6.8 | 4606.2 | 58.0 | 2.7 | 1209.7 | 23.6 | 86.1 | 63 |
| 7 | 0.3 | 0.984 | 5 | 11.637 | 6.823 | -82 | 89.5 | 2.2 | 1378.5 | 55.3 | 3.0 | 1271.0 | 31.3 | 64.0 | 55 |
| 8 | 0.1 | 3.6464 | 2 | 16.17 | 8.04 | 67 | 71.0 | 2.7 | 1785.7 | 56.4 | 3.1 | 1617.2 | 41.4 | 54.9 | 49 |
| 9 | 0.17 | 3.64 | 2 | 13.38 | 7.32 | 67 | 75.7 | 3.1 | 2120.8 | 52.3 | 3.5 | 1967.6 | 49.1 | 44.0 | 40 |
| 10 | 0.08 | 2.555 | 11 | 8.226 | 5.39 | -6 | 61.2 | 2.1 | 3199.0 | 43.5 | 2.8 | 2740.0 | 68.8 | 35.3 | 35 |
| 11 | 0.0541 | 2.895 | 11 | 5.676 | 4.48 | -96 | 60.7 | 2.3 | 3456.5 | 49.5 | 2.9 | 3143.8 | 86.2 | 31.4 | 31 |

- Already cell 8 achieves better performance compared to the baseline:
 - 8 cells, \(\epsilon_{\perp} = 55\mu m, \epsilon_{||} = 41\text{mm} \) vs. 16 cells, \(\epsilon_{\perp} = 55\mu m, \epsilon_{||} = 76\text{mm} \)
- Potential to improve the transmission by minimising the relative energy spread
- Potential to combine with other cooling techniques
- Current results of 6D cooling could allow to start final cooling at < 300 micron
Executing start-to-end simulations and optimisation

- RF-Track, pre-compiled version, download: https://gitlab.cern.ch/rf-track/download
- Cells are described in JSON format
- Python script to read the cells description and to set-up and run RF-Track simulation
- Optimisation script with defined objective function executing the base lattice
- Post-processing, displaying results
- Simulation data management and Surrogate models training

```python
json_data = read_json_file(filename)
channel_params = cells_from_json(json_data)

for cell_params in channel_params:
    cooling_cell = CoolingCell(**cooling_cell_data)
    cooled_beam = cooling_cell.cool_in_cell(beam_to_track)
    utils.plot_results(cooled_beam)

beam_to_track.load("./optimized_beam_{}.format(cell_n-1))
beam_end_cell.save("./optimized_beam_{}.format(cell_n))
```

https://github.com/MuonCollider-WG4/muon_final_cooling
RF cavity in RF-Track vs. G4Beamline

RFTrack
- TM011
- $E = E \sin(kz) \sin(\omega t)$
- open cavity, no windows

G4BL
- TM010
- $E = E \sin(\omega t)$
- Implements windows

Acceleration with G4bl
- cavity length = 0.25 m
- Accelerate from 100 MeV/c to 135 MeV/c, reduce energy spread from 4.2 MeV to 2.3 MeV
- Emittances: transverse 232 micron, longitudinal 3.7 mm
Challenges and potential improvements

- Energy spread
- Transmission losses
- Large bunch length towards the end of the channel

- Improvement by using RF phase such that cavities combine acceleration and rotation?
- Better control over RF bucket size to avoid the transition losses?

<table>
<thead>
<tr>
<th></th>
<th>After cooling</th>
<th>After cooling, cut</th>
<th>After drift and RF</th>
<th>$\sigma_{E_{\text{acc}}} [%]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Energy</td>
<td>99.42</td>
<td>97.12</td>
<td>96.88</td>
<td>5.8</td>
</tr>
<tr>
<td>Spread before</td>
<td>96.11</td>
<td>89.84</td>
<td>88.98</td>
<td>4.4</td>
</tr>
<tr>
<td>absorber: 4%</td>
<td>88.2</td>
<td>84.8</td>
<td>83.88</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>83.17</td>
<td>76.9</td>
<td>76.43</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>75.06</td>
<td>72.71</td>
<td>71.81</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>65.87</td>
<td>62.62</td>
<td>61.84</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>60.13</td>
<td>57.14</td>
<td>56.5</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>55.49</td>
<td>52.79</td>
<td>52</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>46.47</td>
<td>44</td>
<td>43</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>40.56</td>
<td>40</td>
<td>39</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>37</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>34</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>
Summary and outlook

- Demonstrated a **strategy for the optimisation** of final cooling design
- Flexible **optimisation & simulation framework** for evolving design
- **Integrated lattice design** including all relevant elements
- **Shorter channel** achieving **better performance** compared to the baseline:
 - 8 cells, $\epsilon_\perp = 55\mu m$, $\epsilon_\parallel = 41mm$ vs. 16 cells, $\epsilon_\perp = 55\mu m$, $\epsilon_\parallel = 76mm$

Currently achieved best performance: $\epsilon_\perp = 35\mu m$, $\epsilon_\parallel = 68mm$

- **Improvements of longitudinal dynamics control** and transmission losses
- **Consideration of feasible RF-design options**: e.g. multi-harmonics RF (allows the use of higher frequencies, shorter acceleration path is possible.)
- **Start-to-end simulations in G4Beamline**

<table>
<thead>
<tr>
<th>$P_{z,\text{start}}$ [MeV/m]</th>
<th>σE_{start} [MeV]</th>
<th>$\sigma \tau_{\text{start}}$ [mm]</th>
<th>$P_{z,\text{end}}$ [MeV/m]</th>
<th>σE_{end} [MeV]</th>
<th>$\sigma \tau_{\text{end}}$ [mm]</th>
<th>ϵ_\parallel [mm]</th>
<th>ϵ_\perp [mm]</th>
<th>N [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>145.0</td>
<td>3.1</td>
<td>49.8</td>
<td>99.8</td>
<td>4.3</td>
<td>129.8</td>
<td>2.3</td>
<td>239.2</td>
<td>98</td>
</tr>
<tr>
<td>119.1</td>
<td>2.1</td>
<td>209.2</td>
<td>89.1</td>
<td>2.6</td>
<td>201.2</td>
<td>4.8</td>
<td>190.2</td>
<td>95</td>
</tr>
<tr>
<td>118.5</td>
<td>4.0</td>
<td>284.8</td>
<td>88.5</td>
<td>4.0</td>
<td>394.9</td>
<td>6.4</td>
<td>157.3</td>
<td>90</td>
</tr>
<tr>
<td>113.1</td>
<td>5.7</td>
<td>819.5</td>
<td>87.5</td>
<td>3.7</td>
<td>362.8</td>
<td>12.5</td>
<td>133.3</td>
<td>83</td>
</tr>
<tr>
<td>93.9</td>
<td>3.7</td>
<td>357.6</td>
<td>62.7</td>
<td>5.5</td>
<td>738.1</td>
<td>19.1</td>
<td>103.6</td>
<td>76</td>
</tr>
<tr>
<td>83.0</td>
<td>6.8</td>
<td>4606.2</td>
<td>58.0</td>
<td>2.7</td>
<td>1209.7</td>
<td>23.6</td>
<td>86.1</td>
<td>63</td>
</tr>
<tr>
<td>89.5</td>
<td>2.2</td>
<td>1378.5</td>
<td>55.3</td>
<td>3.0</td>
<td>1271.0</td>
<td>31.3</td>
<td>64.0</td>
<td>55</td>
</tr>
<tr>
<td>71.0</td>
<td>2.7</td>
<td>1785.7</td>
<td>56.4</td>
<td>3.1</td>
<td>1617.2</td>
<td>41.4</td>
<td>54.9</td>
<td>49</td>
</tr>
<tr>
<td>75.7</td>
<td>3.1</td>
<td>2120.8</td>
<td>52.3</td>
<td>3.5</td>
<td>1967.6</td>
<td>49.1</td>
<td>44.0</td>
<td>40</td>
</tr>
<tr>
<td>61.2</td>
<td>2.1</td>
<td>3199.0</td>
<td>43.5</td>
<td>2.8</td>
<td>2740.0</td>
<td>68.8</td>
<td>35.3</td>
<td>35</td>
</tr>
<tr>
<td>60.7</td>
<td>2.3</td>
<td>3456.5</td>
<td>49.5</td>
<td>2.9</td>
<td>3143.8</td>
<td>86.2</td>
<td>31.4</td>
<td>31</td>
</tr>
</tbody>
</table>
Thanks a lot for your attention!
Back-up slides
Solenoid field parameters

<table>
<thead>
<tr>
<th>Cell</th>
<th>Bz peak [T]</th>
<th>Solenoid Length [m]</th>
<th>Bz low [T]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43</td>
<td>1.48</td>
<td>4.75</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>1.75</td>
<td>4.75</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>1.0</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>1.0</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>1.11</td>
<td>4.7</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
<td>1.11</td>
<td>4.7</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>1.33</td>
<td>2.1</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td>41</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
<td>1.0</td>
<td>0.86</td>
</tr>
<tr>
<td>11</td>
<td>39</td>
<td>1.0</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Solenoid field in RF-Track:

\[
B(z) = 0.5 \cdot B_0 \left(\frac{L - z}{\sqrt{R^2 + (L - z)^2}} + \frac{z}{\sqrt{R^2 + z^2}} \right)
\]

<table>
<thead>
<tr>
<th>Cell</th>
<th>Aperture [mm]</th>
<th>LH [m]</th>
<th>(E_{\text{kin}, \text{start}}) [MeV]</th>
<th>(E_{\text{kin}, \text{exit}}) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.32</td>
<td>0.85</td>
<td>73.75</td>
<td>39.81</td>
</tr>
<tr>
<td>2</td>
<td>10.33</td>
<td>0.47</td>
<td>53.53</td>
<td>32.75</td>
</tr>
<tr>
<td>3</td>
<td>8.40</td>
<td>0.47</td>
<td>53.64</td>
<td>32.81</td>
</tr>
<tr>
<td>4</td>
<td>7.72</td>
<td>0.40</td>
<td>50.06</td>
<td>31.44</td>
</tr>
<tr>
<td>5</td>
<td>8.47</td>
<td>0.30</td>
<td>35.01</td>
<td>16.95</td>
</tr>
<tr>
<td>6</td>
<td>5.73</td>
<td>0.25</td>
<td>29.83</td>
<td>14.54</td>
</tr>
<tr>
<td>7</td>
<td>5.00</td>
<td>0.30</td>
<td>32.93</td>
<td>13.60</td>
</tr>
<tr>
<td>8</td>
<td>4.20</td>
<td>0.10</td>
<td>22.08</td>
<td>14.69</td>
</tr>
<tr>
<td>9</td>
<td>4.32</td>
<td>0.17</td>
<td>25.18</td>
<td>12.92</td>
</tr>
<tr>
<td>10</td>
<td>4.06</td>
<td>0.08</td>
<td>16.73</td>
<td>9.02</td>
</tr>
<tr>
<td>11</td>
<td>2.89</td>
<td>0.05</td>
<td>16.25</td>
<td>11.16</td>
</tr>
<tr>
<td>12</td>
<td>3.17</td>
<td>0.10</td>
<td>18.88</td>
<td>9.93</td>
</tr>
</tbody>
</table>
Initial phase space location of lost particles

- Cell 2: relative energy spread before absorber: 4%
Initial phase space location of lost particles

Cell 8: relative energy spread before absorber 14 %

Cell 9: relative energy spread before absorber 14 %