Final Cooling Lattice Design
Elena Fol
C. Rogers, D. Schulte, B. Stechauner, A. Latina, A. Grudiev

IMCC 3nd Annual Meeting
CERN, 12-15 March 2024

Outline

- Final Cooling: Overview and Baseline
- Previous Steps and Current work
- Integrating Realistic RF-systems
- Optimization methods
- Start-to-end Lattice Simulation in RF-Track
- Conclusions and Next Steps

() Final Cooling for Muon Collider

Ionisation cooling (the reduction of occupied phase-space by muons): the only technique compatible with muon's lifetime ($\mathbf{2 . 2} \boldsymbol{\mu} \mathbf{s}$), demonstrated by MICE collaboration

| | | Final Coling Channel: reduction
 the cost of longitudinal emittanc |
| :---: | :---: | :---: | :---: | :---: | :---: |

Technology and challenges of Final Cooling

MInternational UON Collider Collaboration

Ionisation cooling: the only technique that works on the timescale of the muon lifetime

- Muons passing through a material $\rightarrow>$ energy loss due to the interaction with absorber material
- Reduction of normalised beam emittance
- Re-accelerating the beam to restore the longitudinal momentum
B. Stechauner

Momentum loss is
opposite to motion,
$p, p_{x}, p_{v}, \Delta E$ decrease

Momentum gain
is purely longitudina

$$
\frac{d \varepsilon_{T}}{d s}=-\frac{1}{\beta^{2} E} \frac{d E}{d s} \varepsilon_{T}+\frac{\beta \gamma \beta_{T}}{2} \frac{d \theta_{0}^{2}}{d s}
$$

Baseline Design and simulation tools

Baseline: MAP study

- Starting beam parameters: $\epsilon_{\perp}=300 \mu \mathrm{~m}, \epsilon_{\|}=1.5 \mathrm{~mm}, \sigma t=50 \mathrm{~mm}, \sigma E=3.2 \mathrm{MeV}$
- High-field magnets 25-32 T, beam momenta ranging from 135-70 MeV/c
- Achieved in previous studies*: $\varepsilon_{\perp}=55 \mu \mathrm{~m}$, with $\varepsilon_{\|}=76 \mathrm{~mm}, \Delta N_{\mu}=50 \%$
-Target is $\varepsilon_{\perp}=25 \mu \mathrm{~m}$: using 40 T solenoid and further optimization

High field - low energy muon ionization cooling channel Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer
Phys. Rev. ST Accel. Beams 18, 091001 - Published 4 September 2015

Baseline Design and simulation tools

Baseline: MAP study

UON Collide UON Collider

- Starting beam parameters: $\epsilon_{\perp}=300 \mu \mathrm{~m}, \epsilon_{\|}=1.5 \mathrm{~mm}, \sigma t=50 \mathrm{~mm}, \sigma E=3.2 \mathrm{MeV}$
- High-field magnets 25-32 T, beam momenta ranging from 135-70 MeV/c
- Achieved in previous studies*: $\varepsilon_{\perp}=55 \mu \mathrm{~m}$, with $\varepsilon_{\|}=76 \mathrm{~mm}, \Delta N_{\mu}=50 \%$
-Target is $\varepsilon_{\perp}=25 \mu \mathrm{~m}$: using 40 T solenoid and further optimization

First steps using ICOOL simulations:

\checkmark Python-wrapper to ease generation of input files and tracking results analysis
\checkmark Linear optics matching

High field - low energy muon ionization cooling channel Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer
Phys. Rev. ST Accel. Beams 18, 091001 - Published 4 September 2015
\checkmark Transverse cooling using Liquid Hydrogen absorber

- Studied transverse aspects only

Baseline Design and simulation tools

High field - low energy muon ionization cooling channel Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer
Phys. Rev. ST Accel. Beams 18, 091001 - Published 4 September 2015
\checkmark Linear optics matching
\checkmark Transverse cooling using Liquid Hydrogen absorber

- Studied transverse aspects only

Towards integrated Final Cooling design:

- RF-Track (developed by A. Latina): https://gitlab.cern.ch/rf-track/download
- Includes collective effects, relevant lattice elements (absorbers, stating wave RF-cavities, solenoids), Python and Octave interface
\Rightarrow easy to combine with advanced optimisation algorithms
- Specific ionisation cooling effects have been recently added (multiple scattering, muon decays)
\Rightarrow Further presented studies are focused on RF-Track simulations (thanks to A. Latina)
See Andrea's talk tomorrow: https://indico.cern.ch/event/1325963/contributions/5828922/
I. Estimate optimal momenta and absorber lengths in every cell, with objective $\epsilon_{\perp}=25 \mu \mathrm{~m}$.
\Rightarrow Provides starting momenta and absorber lengths for all cells
II. Optics control, ensure low beta-function in absorber by optimizing solenoid field and matching coils
- Mitigates emittance blow up in the fridge fields and controls the optics in absorber region
III. Optimize acceleration and rotation of the bunch after absorber (simplified RF model)
\Rightarrow Provides drifts and rotation "kicks" initial estimates for RF- system design

Focus of today's talk

IV. Integrated end-to-end simulation of the complete cooling channel using RF-Track

- Optimize a realistic RF system: frequencies, phases, gradients to control the longitudinal dynamics
- Current Limitations
\Rightarrow Developed tools and methods

Design optimisation strategy

I. Estimate optimal momenta and absorber lengths in every cell, with objective $\epsilon_{\perp}=25 \mu \mathrm{~m}$.
\Rightarrow Provides starting momenta and absorber lengths for all cells
$\frac{d E}{d s}=4 \pi N_{A} \rho r_{e}^{2} m_{e} c^{2} \frac{Z}{A}\left[\frac{1}{\beta^{2}} \ln \left(\frac{2 m_{e} c^{2} \gamma^{2} \beta^{2}}{I(Z)}\right)-1-\frac{\delta}{2 \beta^{2}}\right]$ $\frac{d \epsilon_{\perp}}{d s}=-\frac{\epsilon_{\perp}}{\beta^{2} E} \frac{d E}{d s}+\frac{\beta_{\perp} E_{s}^{2}}{2 \beta^{3} m c^{2} L_{R} E}$

\checkmark Tracking simulations using 40T and
optimised parameters confirm the
potential for lower emittance
II. Optics control, ensure low beta-function in absorber by optimizing solenoid field and matching coils

- Mitigates emittance blow up in the fridge fields and controls the optics in absorber region
III. Optimize acceleration and rotation of the bunch after absorber (simplified RF model)
- Provides drifts and rotation "kicks" initial estimates for RF- system design

MInternational
UUN Collider llaboration
I. Estimate optimal momenta and absorber lengths in every cell, with objective $\epsilon_{\perp}=25 \mu \mathrm{~m}$.
\Rightarrow Provides starting momenta and absorber lengths for all cells

$$
\frac{d E}{d s}=4 \pi N_{A} \rho r_{e}^{2} m_{e} c^{2} \frac{Z}{A}\left[\frac{1}{\beta^{2}} \ln \left(\frac{2 m_{e} c^{2} \gamma^{2} \beta^{2}}{I(Z)}\right)-1-\frac{\delta}{2 \beta^{2}}\right]
$$

$$
\frac{d \epsilon_{\perp}}{d s}=-\frac{\epsilon_{\perp}}{\beta^{2} E} \frac{d E}{d s}+\frac{\beta_{\perp} E_{s}^{2}}{2 \beta^{3} m c^{2} L_{R} E}
$$

\checkmark Tracking simulations using 40T and optimised parameters confirm the potential for lower emittance
II. Optics control, ensure low beta-function in absorber by optimizing solenoid field and matching coils
\Rightarrow Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

III. Optimize acceleration and rotation of the bunch after absorber (simplified RF model)

- Provides drifts and rotation "kicks" initial estimates for RF- system design
I. Estimate optimal momenta and absorber lengths in every cell, with objective $\epsilon_{\perp}=25 \mu \mathrm{~m}$.
\Rightarrow Provides starting momenta and absorber lengths for all cells

$$
\begin{aligned}
& \frac{d E}{d s}=4 \pi N_{A} \rho r_{e}^{2} m_{e} c^{2} \frac{Z}{A}\left[\frac{1}{\beta^{2}} \ln \left(\frac{2 m_{e} c^{2} \gamma^{2} \beta^{2}}{I(Z)}\right)-1-\frac{\delta}{2 \beta^{2}}\right] \\
& \frac{d \epsilon_{\perp}}{d s}=-\frac{\epsilon_{\perp}}{\beta^{2} E} \frac{d E}{d s}+\frac{\beta_{\perp} E_{s}^{2}}{2 \beta^{3} m c^{2} L_{R} E}
\end{aligned}
$$

\checkmark Tracking simulations using 40T and optimised parameters confirm the potential for lower emittance
II. Optics control, ensure low beta-function in absorber by optimizing solenoid field and matching coils
\Rightarrow Mitigates emittance blow up in the fridge fields and controls the optics in absorber region

III. Optimize acceleration and rotation of the bunch after absorber (simplified RF model)
\Rightarrow Provides drifts and rotation "kicks" initial estimates for RF- system design

\checkmark Transverse emittance $=32$ micron, Longitudinal emittance $=77 \mathrm{~mm}$
\checkmark Problem: Transmission (only ~29\%)
=> more acceleration, higher momenta at the start of last cells?

Integrated Lattice Optimization

Minternational
Collaborollider
colion
Focus of today's talk
IV. Integrated end-to-end simulation of the complete cooling channel using RF-Track

Objective function : $\frac{\epsilon_{\perp} \epsilon_{\|}}{N_{\mu}}$

- Free parameters:
- Absorber (liquid hydrogen) thickness
- Drift length
- Number of accelerating RF cavities, rf phase
- Number of rotating RF cavities, rf phase
- \quad B-field in RF region to match the field in the cooling cell and the change in momentum

MuON Collider Unternalion UON
 UON Collider

- Run optimization for each cell, a few iterations
- Create a surrogate model to estimate the initial parameters
- Bayesian Optimization, BOBYQA

- Input: $\epsilon_{\perp \text { start }}, P_{z, \text { start }}, \epsilon_{\perp}, \sigma_{t}, \sigma E, N_{\mu}$
- Output: $L_{d r i f t}, N_{\text {rot }}, N_{c a v}, \phi_{R F}, L_{\text {absorber }}, L_{\text {sol }}$
\Rightarrow Fast design estimate
\Rightarrow Use as initial guess for optimisation
algorithms (optimal solution is found within fewer steps)

Integrated Lattice Optimization: Methods

Optimization procedure:

- Run optimization for each cell, a few iterations
- Create a surrogate model to estimate the initial parameters
- Bayesian Optimization, BOBYQA

- Input: $\epsilon_{\perp \text { start }}, P_{z, \text { start }}, \epsilon_{\perp}, \sigma_{t}, \sigma E, N_{\mu}$
- Output: $L_{d r i f t}, N_{\text {rot }}, N_{c a v}, \phi_{R F}, L_{\text {absorber }}, L_{\text {sol }}$
\Rightarrow Fast design estimate
\Rightarrow Use as initial guess for optimisation algorithms (optimal solution is found within fewer steps)

Example, cell 4: $\epsilon_{\perp, \text { start }}=170 \mu m$

Target:
$\epsilon_{\perp}=150 \mu \mathrm{~m}, \sigma_{t}=400 \mathrm{~mm}, \sigma E=2.0 \mathrm{MeV}, N_{\mu}=75 \%$
Simulated with parameters predicted by ML-model:
$\epsilon_{\perp}=149 \mu m, \sigma_{t}=404 m m, \sigma E=3.5 \mathrm{MeV}, N_{\mu}=69 \%$
Optimiser, 150 steps, starting with predicted parameters:
$\epsilon_{\perp}=150 \mu \mathrm{~m}, \sigma_{t}=280 \mathrm{~mm}, \sigma E=2.1 \mathrm{MeV}, N_{\mu}=71 \%$

Integrated Lattice Optimization: Methods

- How to speed up simulations-based design optimization?
- Surrogate models to replace slow-executing simulations (used for optics matching in ICOOL simulations)
- How to estimate initial optimization parameters?
- Surrogate models to provide optimizers with "warm start"
- Bayesian Optimization
- Robust emittance estimation during optimization?

- Clustering for detection of tails biasing the emittance calculation

Details on simulations setup

MInternational UON Collider Collaboration

- General layout

Example for cell 1:
Absorber thickness: 0.85
Solenoid length $=1.48 \mathrm{~m}$

- Simulating RF-systems:
- SW cavity - model: pillbox, fixed length $=0.25 \mathrm{~m}$
- Rotating cavities: rf phase to be optimised to provide the energy spread minimising rotation (and partially acceleration)
- Accelerating cavities: RF-Track routine to find the phase providing maximum acceleration
- $\quad f_{R F}$ according to $\left.\lambda=\sigma_{t} / 20, G=1.88 * \sqrt{(} f_{R} F\right)$ (optimistic assumption for gradients, see IMCC report)

Beam parameters evolution inside a cooling cell

MInternational
UON Collider Collaboratio

Cell 1, passing through liquid hydrogen absorber

Rotation and acceleration

(1ntegrated Lattice Optimization: Current results

$\boldsymbol{\mu}_{\mathrm{c}}^{\boldsymbol{c}}$	Cell	$L H_{2}$ $[\mathrm{~m}]$	Drift $[\mathrm{m}]$	$N_{R F}$ ot.	$N_{R F}$ accel.	$f_{R F}$ $[\mathrm{MHz}]$	G $[\mathrm{MV} / \mathrm{m}]$	$\phi_{R F, \text { rot. }}$ degrees
1	0.85							
2	0.466	0.3238	5	5	111.06	19.81	-180	
3	0.46958	1.363	10	7	56.85	14.17	90	
4	0.4	2.5	9	8	40.13	11.9	51	
5	0.3	1.8358	7	2	34.91	11.11	-10	
6	0.25	2.0	5	10	30.61	10.4	-54	
7	0.3	0.984	5	14	11.637	6.823	-82	
8	0.1	3.6464	2	7	16.17	8.04	67	
9	0.17	3.64	2	11	13.38	7.32	67	
10	0.08	2.555	11	2	8.226	5.39	-6	
11	0.0541	2.895	11	4	5.676	4.48	-96	

$P_{z, \text { start }}$ $[\mathrm{MeV} / \mathrm{m}]$	$\sigma E_{\text {start }}$ $[\mathrm{MeV}]$	$\sigma t_{\text {start }}$ $[\mathrm{mm}]$	$P_{z, \text { end }}$ $[\mathrm{MeV} / \mathrm{m}]$	$\sigma E_{\text {end }}$ $[\mathrm{MeV}]$	$\sigma t_{\text {end }}$ $[\mathrm{mm}]$	$\epsilon_{\\|}$ $[\mathrm{mm}]$	ϵ_{\perp} $[\mu \mathrm{m}]$	N $[\%]$
145.0	3.1	49.8	99.8	4.3	129.8	2.3	239.2	98
119.1	2.1	209.2	89.1	2.6	201.2	4.8	190.2	95
118.5	4.0	284.8	88.5	4.0	394.9	6.4	157.3	90
113.1	5.7	819.5	87.5	3.7	362.8	12.5	133.3	83
93.9	3.7	357.6	62.7	5.5	738.1	19.1	103.6	76
83.0	6.8	4606.2	58.0	2.7	1209.7	23.6	86.1	63
89.5	2.2	1378.5	55.3	3.0	1271.0	31.3	64.0	55
71.0	2.7	1785.7	56.4	3.1	1617.2	41.4	54.9	49
75.7	3.1	2120.8	52.3	3.5	1967.6	49.1	44.0	40
61.2	2.1	3199.0	43.5	2.8	2740.0	68.8	35.3	35
60.7	2.3	3456.5	49.5	2.9	3143.8	86.2	31.4	31

- Already cell 8 achieves better performance compared to the baseline:

8 cells, $\epsilon_{\perp}=55 \mu \mathrm{~m}, \epsilon_{\|}=41 \mathrm{~mm}$ vs. 16 cells $, \epsilon_{\perp}=55 \mu \mathrm{~m}, \epsilon_{\| \mid}=76 \mathrm{~mm}$

- Potential to improve the transmission by minimising the relative energy spread
- Potential to combine with other cooling techniques
- Current results of 6D cooling could allow to start final cooling at < 300 micron

Executing start-to-end simulations and optimisation

Ynternational UON Collider Collaboration

- RF-Track, pre-compiled version, download: https://gitlab.cern.ch/rf-track/download
- Cells are described in JSON format
- Python script to read the cells description and to set-up and run RF-Track simulation
- Optimisation script with defined objective function executing the base lattice
- Post-processing, displaying results
- Simulation data management and Surrogate models training
"abs_len": 0.466,
"entr_coil_bz": 3.10,
"entr_coil_r": 0.4,
"entr_coil_offset": 0.615, "exit_coil_bz": 2.46, "exit_coil_r": 0.7, "exit_coil_offset": 0.583, "sol_len": 1.75,
"low_bz_cool": 4.629,
"low_bz_rf": 4.79,
"freq_accel": 111.06,
"grad_accel": 19.81, "drift_len": 0.3238,
"nrot": 5,
"naccel": 5,
"cell_len": 0.25,
"phase_rot": -180

```
json_data = read_json_file(filename)
channel_params = cells_from_json(json_data)
for cell_params in channel_params:
    cooling_cell = CoolingCelll(**cooling_cell_data)
    cooled_beam = cooling_cell.cool_in_cell(bēam_to_track)
    utils.plot_results(cooled_beam)
beam_to_track.load("./optimized_beam_{}".format(cell_n-1))
beam_end_cell.save("./optimized_beam_{}".format(cell_n))
```


(D) RF cavity in RF-Track vs. G4Beamline

RFTrack

- TM011
- $E=E \sin (k z) \sin (\omega t)$
- open cavity, no windows

G4BL

- TM010
- $E=E \sin (\omega t)$
- Implements windows

Acceleration with G4bl

- cavity length $=0.25 \mathrm{~m}$
- Accelerate from $100 \mathrm{MeV} / \mathrm{c}$ to $135 \mathrm{MeV} / \mathrm{c}$, reduce energy spread from 4.2 MeV to 2.3 MeV
- Emittances: transverse 232 micron, longitudinal 3.7 mm

Challenges and potential improvements

Energy spread

- Transmission losses
- Large bunch length towards the end of the channel
- Improvement by using RF phase such that cavities combine acceleration and rotation?
- Better control over RF bucket size to avoid the transition losses?

After cooling	After cooling, cut	After drift and RF	$\sigma E_{\text {accel }}[\%]$
99.42	97.12	96.88	5.8
96.11	89.84	88.98	4.4
88.2	84.8	83.88	5.8
83.17	76.9	76.43	7
75.66	72.71	71.81	14.4
65.87	62.62	61.84	7.6
60.13	57.14	56.5	8.4
55.49	52.79	52	14
46.47	44	43	13.9
40.56	40	39	16.7
38	37	36	18
35	34		21

Summary and outlook

\checkmark Demonstrated a strategy for the optimisation of final cooling design

\checkmark Flexible optimisation \& simulation framework for evolving design
\checkmark Integrated lattice design including all relevant elements
\checkmark Shorter channel achieving better performance compared to the baseline:
8 cells, $\epsilon_{\perp}=55 \mu \mathrm{~m}, \epsilon_{\|}=41 \mathrm{~mm}$ vs. 16 cells $, \epsilon_{\perp}=55 \mu \mathrm{~m}, \epsilon_{\| \mid}=76 \mathrm{~mm}$
\checkmark Currently achieved best performance: $\epsilon_{\perp}=35 \mu \mathrm{~m}, \epsilon_{\|}=68 \mathrm{~mm}$

- Improvements of longitudinal dynamics control and transmission losses
- Consideration of feasible RF-design options: e.g. multiharmonics RF (allows the use of higher frequencies, shorter acceleration path is possible.)
- Start-to-end simulations in G4Beamline

$P_{z, \text { start }}$ $[\mathrm{MeV} / \mathrm{m}]$	$\sigma E_{\text {start }}$ $[\mathrm{MeV}]$	$\sigma t_{\text {start }}$ $[\mathrm{mm}]$	$P_{z, \text { end }}$ $[\mathrm{MeV} / \mathrm{m}]$	$\sigma E_{\text {end }}$ $[\mathrm{MeV}]$	$\sigma t_{\text {end }}$ $[\mathrm{mm}]$	$\epsilon_{\\|}$ $[\mathrm{mm}]$	ϵ_{\perp} $[\mu \mathrm{m}]$	N $[\%]$
145.0	3.1	49.8	99.8	4.3	129.8	2.3	239.2	98
119.1	2.1	209.2	89.1	2.6	201.2	4.8	190.2	95
118.5	4.0	284.8	88.5	4.0	394.9	6.4	157.3	90
113.1	5.7	819.5	87.5	3.7	362.8	12.5	133.3	83
93.9	3.7	357.6	62.7	5.5	738.1	19.1	103.6	76
83.0	6.8	4606.2	58.0	2.7	1209.7	23.6	86.1	63
89.5	2.2	1378.5	55.3	3.0	1271.0	31.3	64.0	55
71.0	2.7	1785.7	56.4	3.1	1617.2	41.4	54.9	49
75.7	3.1	2120.8	52.3	3.5	1967.6	49.1	44.0	40
61.2	2.1	3199.0	43.5	2.8	2740.0	68.8	35.3	35
60.7	2.3	3456.5	49.5	2.9	3143.8	86.2	31.4	31

Thanks a lot for your attention!

Collaboration

Back-up slides

Solenoid field parameters

Cell	Bz peak $[T]$	Solenoid Length $[\mathrm{m}]$	Bz low $[T]$
1	43	1.48	4.75
2	43	1.75	4.75
3	43	1.0	4.7
4	43	1.0	4.7
5	43	1.0	4.7
6	43	1.11	4.7
7	41	1.33	2.1
8	41	1.0	2.0
9	41	1.4	1.1
10	39	1.0	0.86
11	39	1.0	0.86

Solenoid field in RF-Track:

$$
B(z)=0.5 \cdot B_{0}\left(\frac{L-z}{\sqrt{R^{2}+(L-z)^{2}}}+\frac{z}{\sqrt{R^{2}+z^{2}}}\right)
$$

Cell	Aperture $[\mathrm{mm}]$	LH $[\mathrm{m}]$	$E_{\text {kin }}$, start $[\mathrm{MeV}]$	$E_{\text {kin }}$, exit $[\mathrm{MeV}]$
1	15.32	0.85	73.75	39.81
2	10.33	0.47	53.53	32.75
3	8.40	0.47	53.64	32.81
4	7.72	0.40	50.06	31.44
5	8.47	0.30	35.01	16.95
6	5.73	0.25	29.83	14.54
7	5.00	0.30	32.93	13.60
8	4.20	0.10	22.08	14.69
9	4.32	0.17	25.18	12.92
10	4.06	0.08	16.73	9.02
11	2.89	0.05	16.25	11.16
12	3.17	0.10	18.88	9.93

Initial phase space location of lost particles

MUnternational Collaboration

- Cell 2: relative energy spread before absorber: 4\%

Initial phase space location of lost particles

M Mnternatio

Cell 8: relative energy spread before absorber 14 \%

