



## **Calorimeter R&D**

E. Di Meco – INFN Laboratori Nazionali di Frascati on behalf of Crilin and MPGD-HCAL groups

**IMCC and MuCol annual meeting** - 12-15 March 2024, CERN







## ECAL R&D

March 14 2024

Calorimeter R&D: Crilin- E. Di Meco

2/16

## Beam Induced Background in ECAL



Energy released in ECAL barrel by one BIB bunch crossing







- Expected BIB on the ECAL barrel ~300  $\gamma$ /cm<sup>2</sup>/event with E~1.7 MeV.
- BIB can be handled using information from energy releases in the ECAL.
   Key features:
- Timing: BIB hits are out-of-time a resolution in the order of 100 ps is needed
- Longitudinal segmentation: different profile for signal and BIB
- Granularity: in order to avoid BIB overlap in the same cell

• Energy resolution: target 
$$\rightarrow \frac{\Delta E}{E} = \frac{10\%}{\sqrt{E[GeV]}}$$



Calorimeter R&D: Crilin- E. Di Meco



- The goal is to build a crystals calorimeter that is fast, relatively cheap, with high granularity (both transversal and longitudinal), and radiation hard → optimized for muon collider characteristics.
- Crilin is a semi-homogeneous electromagnetic calorimeter made of Lead Fluoride Crystals (PbF<sub>2</sub>) matrices where each crystal is readout by 2 series of 2 UV-extended surface mount <u>SiPMs.</u> S. Ceravolo et al 2022 JINST 17 P09033
- Two prototype versions built and tested up to now: Proto-0 and Proto-1.
- The final layout (3 TeV configuration) will consist of 5 layers of crystal matrices (22 X<sub>0</sub>)





### **NINTERNALION Simulation in the MC-framework**

- Crilin layout was implemented in the official Muon Collider simulation framework
- It is necessary to have a good performance on the measurement of photon/electron energy from GeV to TeV scale
- BIB contribution is not kept into account for now (work in progress)







Neutron fluence: ~10<sup>14</sup>  $n_{1MeVeq}$ /cm<sup>2</sup> year on ECAL TID: ~ 10 kGy/ year on ECAL.

- Cristals: PbF<sub>2</sub> checked for TID ( up to 1 MGy @ Calliope, Enea Casaccia) and 14 MeV neutrons from ENEA-FNG, up to 10<sup>13</sup> n/cm<sup>2</sup>)
  - No significant loss in transmittance up to 350 kGy.
  - Good alternative (stable up to 2 MGy) is PWO-UF.
- SiPMs: 10 and 15 µm px-size SiPMs irradiated at ENEA-FNG up to 10<sup>14</sup>n<sub>1MeVeq</sub>/cm<sup>2</sup>
  - ➢ 10 µm px-size have a more manageable dark current increase



### 10 $\mu$ m pixel-size SiPMs

| T [°C]      | $V_{\rm br}$ [V] | $I(V_{br}+4V)$ [mA] | $I(V_{br}+6V)$ [mA] | $I(V_{br}+8V)$ [mA] |
|-------------|------------------|---------------------|---------------------|---------------------|
| $-10 \pm 1$ | $76.76\pm0.01$   | $1.84\pm0.01$       | $6.82\pm0.01$       | $29.91 \pm 0.01$    |
| $-5\pm1$    | $77.23 \pm 0.01$ | $2.53\pm0.01$       | $9.66\pm0.01$       | $37.51\pm0.01$      |
| $0\pm 1$    | $77.49 \pm 0.01$ | $2.99\pm0.01$       | $11.59\pm0.01$      | $38.48\pm0.01$      |



### **Prototype versions**

- Proto-0 (2 crystals  $\rightarrow$  4 channels)
- Proto-1 (3x3 crystals x 2 layers → 36 channels)

### **Front-end electronics**

- Design completed
- Production and QC completed

### **Radiation hardness campaigns**

### Test beam campaigns

- Proto-0 at CERN H2 → <u>C. Cantone et</u> al. 2023 Front. Phys. 11:1223183
- Proto-1:
  - LNF-BTF (July 2023)
  - CERN-SPS-H2 (August 2023)













### Aim:

- Test CRILIN performances at low energies
- Study different wrappings and configurations, Teflon and Mylar.
- First raw estimation of the energy resolution

### **Light Yield results:**

- ~ 0.32 PE/MeV @ V<sub>op</sub> +2V  $\rightarrow$  Teflon
- ~ 0.25 PE/MEV @  $V_{op}$  +2V  $\rightarrow$  Mylar

Beam: 450 MeV electrons in single particle mode

### **Timing results:**

- Two wrappings compared → Teflon outperforms
   Mylar, higher amount of charge collected.
- Results are encouraging if we consider the very low light output

### C. Cantone et al. 2024 doi:10.1109/TNS.2024.3364771



Calorimeter R&D: Crilin- E. Di Meco

# Proto-1: Timing @ 120 GeV

- CERN SPS-H2  $\rightarrow$  energy scan with electrons from 40 GeV to 150 GeV
- Aim: evaluation of energy and time resolution
- Time Resolution @ 120 GeV is of O(20 ps) both for both layers using the two channels time difference for the central crystals
- Studies on using the layer mean time are still ongoing
- For TLAYER1 TLAYER0 σ(ΔT) ~ 40 ps mainly dominated by synchronisation jitter estimated to be O(32ps)





# Next steps on ECAL side

- Test beam @ BTF of LNF with e- to measure the light yield loss in terms of photoelectrons detected by the SiPMs after 10 Mrad of irradiation from March 25, 2024.
- 2024 2025:

We submitted and won a PRIN proposal for a 210 kEUR grant for the project CALORHINO: an innovative radiation-hard calorimeter proposal for a future Muon Collider Experiment  $\rightarrow$ 120 kEur has been assigned to develop a 5x5 x4(layers) Crilin prototype: 1 MR – 16.8 X0

• DRD6-WP3 from 2025:

Expanding upon the PRIN prototype to a 9x9 x4(layers) configuration, with a target of 2  $M_R$  – 21  $X_0$ .







## HCAL R&D



March 14 2024

Calorimeter R&D: Crilin- E. Di Meco-

12/16

## **HCAL readout with MPGD**



**Proposal:** micro-pattern gaseous detectors as readout layers for a sampling hadronic calorimeter

### **MPGD** features:

- **cost-effectiveness** for large area instrumentation
- radiation hardness up to several C/cm<sup>2</sup>
- **discharge rate** not impeding operations
- rate capability **O(MHz/cm<sup>2</sup>)**
- space resolution **O** (100  $\mu$ m), allowing high granularity
- time resolution with MIPs few ns

**Plan:** systematically comparing two MPGD technologies for hadronic calorimetry:  $\mu$ -RWELL and resistive **MIcroMegas** 



### See A. Pellecchia's talk, indico

## MPGD-HCAL simulations

### Two ongoing simulation activities:

Simulation in Muon collider framework: an MPGD-HCAL **geometry** has been **implemented** in the Muon collider software.

Efficiency and resolution of MPGD calorimeter is comparable with baseline, but **bugs** causing worse efficiency and energy resolution are being investigated. Ongoing **debugging** 

Standalone Geant4 simulation for shower containment calculation

Longitudinal containment in 10 λ, transversal in 3
 λ

Main result: Semi-digital calorimeter energy resolution down to 8% for a 80 GeV pion



Calorimeter R&D: Crilin- E. Di Meco

# MPGD-HCAL hardware R&D

Prototypes of resistive MPGDs produced and tested within **RD51** common project:

• 7 µ-RWELL, 4 MicroMegas, 1 RPWELL

**Goal:** comparing the three technologies first with MIPs, then in calorimetry

### Performed two test beams:

- SPS with high-energy muons in July 2023 (MPGD performance) 0.6
- PS with low-energy pions in Aug-Sept 2023 (calorimeter performance)

### **Results:**

- Good detector intrinsic performance (space resolution, efficiency)
- Various response uniformity for different technologies, under investigation
- High probability of cross-talk between pads due to readout vias
   routing





Test beam setup at SPS, Size: 20x20 cm<sup>2</sup>, 1x1 cm<sup>2</sup> pads



### **Next steps on HCAL**



- Consolidating results with present prototypes in two test beams in 2024
- Beginning integration with more modern readout electronics
- New prototypes:
  - > 4 large detectors (50×50 cm<sup>2</sup>) to be built in 2024
  - Design optimization to exclude cross-talk and simplify manufacturing
  - > Redesign of modular mechanics
  - Started common project with Crilin (ECAL): expected common test beam in 2025







## **Backup slides**

MInternational UON Collider Collaboration

18/16

### 400 300 200 100 100 X (mm) Charge of muon hits in a µ-RWELL ADC) 008 7007 MP 600 500 400 300 200 100 100

High probability of cross-talk between pads due to readout vias routing

0 0

.

.

0

### **Backup plots**

Various response uniformity for different technologies, under investigation







## Radiation hardness: Crystals

Neutron fluence: ~ $10^{14}$  n<sub>1MeVeq</sub>/cm<sup>2</sup> year on ECAL TID ~ 100 krad/year on ECAL.

Radiation hardness of two PbF<sub>2</sub> and PbWO<sub>4</sub>-UF crystals (10x10x40 mm<sup>3</sup>) checked for TID ( up to **1 MGy** @ Calliope, Enea Casaccia) and neutrons (14 MeV neutrons from Frascati Neutron Generator, Enea Frascati, up to **10<sup>13</sup> n/cm<sup>2</sup>**)

- For PbF<sub>2</sub>:
  - after a TID > 350 kGy no significant decrease in transmittance observed.
  - ➤ Transmittance after neutron irradiation showed no deterioration → possible natural annealing
- For PbWO<sub>4</sub>-UF:
  - after a TID ~2 MGy no significant decrease in transmittance observed.



| Crystal                      | PbF <sub>2</sub> | PWO-UF |
|------------------------------|------------------|--------|
| Density [g/cm <sup>3</sup> ] | 7.77             | 8.27   |
| Radiation length [cm]        | 0.93             | 0.89   |
| Molière radius [cm]          | 2.2              | 2.0    |
| Decay constant [ns]          | -                | 0.64   |
| Refractive index at 450 nm   |                  | 2.2    |
| Manufacturer                 | SICCAS           | Crytur |



Calorimeter R&D: Crilin- E. Di Meco

# Radiation hardness: SiPMs

### **Neutrons irradiation:**

14 MeV neutrons with a total fluence of  $10^{14}$  n/cm<sup>2</sup> (@FNG) for 80 hours on a series of two SiPMs (10 and 15  $\mu$ m pixel-size). Extrapolated from I-V curves at 3 different temperatures:

- Currents at different operational voltages.
- Breakdown voltages;

For the expected radiation level, the best SiPMs choice are the 10  $\mu$ m one for its minor dark current contribution.

### TID:

no significant amount of dark current up to 10 kGy (@Calliope).

#### 15 $\mu$ m pixel-size

| T [°C]      | $V_{br}$ [V]   | $I(V_{br}+4V)$ [mA] | $I(V_{br}+6V)$ [mA] | $I(V_{br}+8V)$ [mA] |
|-------------|----------------|---------------------|---------------------|---------------------|
| $-10 \pm 1$ | $75.29\pm0.01$ | $12.56\pm0.01$      | $30.45\pm0.01$      | $46.76\pm0.01$      |
| $-5\pm1$    | $75.81\pm0.01$ | $14.89\pm0.01$      | $32.12\pm0.01$      | $46.77\pm0.01$      |
| $0\pm 1$    | $76.27\pm0.01$ | $17.38\pm0.01$      | $33.93\pm0.01$      | $47.47\pm0.01$      |

### 10 $\mu$ m pixel-size

| T [°C]    | $V_{\rm br}$ [V] | $I(V_{br}+4V)$ [mA] | $I(V_{br}+6V)$ [mA] | $I(V_{br}+8V)$ [mA] |
|-----------|------------------|---------------------|---------------------|---------------------|
| $-10\pm1$ | $76.76 \pm 0.01$ | $1.84\pm0.01$       | $6.82\pm0.01$       | $29.91 \pm 0.01$    |
| $-5\pm1$  | $77.23 \pm 0.01$ | $2.53\pm0.01$       | $9.66\pm0.01$       | $37.51\pm0.01$      |
| $0\pm 1$  | $77.49 \pm 0.01$ | $2.99\pm0.01$       | $11.59\pm0.01$      | $38.48\pm0.01$      |





### MINITERNATION MUN Collider Collaboration Proto-1: Mechanics and Electronics



### **Mechanics:**

- Two stackable and interchangeable submodules assembled by bolting, each composed of 3x3 crystals+36 SiPMs (2 channel per crystal)
- light-tight case which also embeds the front-end electronic boards and the heat exchanger needed to cool down the SiPMs.









### **Electronics:**

- SiPMs board: custom SiPM array board 36x10 µm Hamamatsu SMD SiPMs
- Mezzanine board: 18x readout channels → amplification, shaping and individual bias regulation, slow control routines



## MUN Collaboration Test beam campaigns: Proto-0



Frontiers in Physics, https://doi.org/10.3389/fphy.2023.1223183



- CERN SPS-H2→ 120 GeV e<sup>-</sup> beam on a single crystal prototype
- Cherenkov systematics in the light propagation → FRONT and BACK orientation tried
- The **BACK** run time resolution is better for both crystals.
- PbF<sub>2</sub> outperforms PbWO<sub>4</sub>-UF despite its higher light output (purely Cherenkov)
- **PbF<sub>2</sub>**  $\rightarrow \sigma_{\text{MT}} < 25 \text{ ps worst-case for } E_{\text{dep}} > 3 \text{ GeV}$
- **PbWO<sub>4</sub>-UF**  $\rightarrow \sigma_{MT} < 45$  ps worst-case for E<sub>dep</sub> > 3 GeV

| 102 mg                                                              |              | 1.00    |                      |                  | PbF <sub>2</sub>         |                          |
|---------------------------------------------------------------------|--------------|---------|----------------------|------------------|--------------------------|--------------------------|
| $\sigma_{MT,FC} = \frac{102  ps}{F(C_{\rm e})^{1/2}} \oplus 56  ps$ | "Front" mode |         |                      |                  | back-run                 | front-run                |
| E[GeV]                                                              | beam         |         | $E_{\rm dep}$ N      | APV [GeV]        | $4.26 \pm 0.01$          | $4.81 \pm 0.03$          |
|                                                                     |              |         | $E_{dep}$ s          | igma [GeV]<br>eV | $1.35 \pm 0.01$<br>~29.3 | $1.46 \pm 0.02$<br>~35.6 |
|                                                                     | SiPMs        |         | NPE/N                | MeV              | ~0.26                    | ~0.30                    |
| $\sigma_{MT,B} = \frac{76  ps}{76  ps} \oplus 12  ps$               | Crystal      |         |                      |                  |                          |                          |
| E[GeV]                                                              |              |         |                      |                  | PWO-UF                   |                          |
|                                                                     | "Back" mode  |         |                      |                  | back-run                 | front-run                |
|                                                                     | beam         |         | $E_{\rm dep}$        | MPV [GeV]        | $6.39 \pm 0.01$          | $6.88 \pm 0.01$          |
|                                                                     |              | CHO CHI | $E_{\rm dep}$        | sigma [GeV]      | $1.83 \pm 0.01$          | $1.99 \pm 0.01$          |
| 6 7 8 0 10                                                          |              |         | pC/M                 | leV              | ~66.7                    | ~76.9                    |
| 6 7 8 9 10<br>F. IGeVI                                              | )            |         | PC/M<br>Track X NPE/ | leV<br>MeV       | ~66.7<br>~0.58           | $\sim 76.9 \\ \sim 0.67$ |



## MINITURE Test beam campaigns: Proto-1 BTF



#### 100 GeV

### Aim:

- Test CRILIN performances at low energies
- Study different wrappings and configurations
- First raw estimation of the energy resolution

**Beam:** 450 MeV electrons in single particle mode

### Proto-1:

- PbF<sub>2</sub> crystals → wrappings: Mylar and Teflon
- Readout: 10 µm pixel-size SiPMs, one layer with series connection, the other with parallel connection







10 GeV







Test beam campaigns: Proto-1 H2

- CERN SPS-H2→ energy scan with electrons from 40 GeV to 150 GeV
- Aim: evaluation of energy and time resolution
- Beam reconstructed with 2 silicon strip telescopes
- Data acquisition with 2 CAEN V1742 (32 ch each) modified @ 2 Vpp
- 5 Gs/s sampling rate







### Minternational MUON Collider Collaboration Data-MC agreement



Geant-4 simulation of the prototype with a 120 e<sup>-</sup> beam

Energy deposit simulated:

- in the two layers
- In the whole prototype

### Excellent agreement between data and MC for all configurations







#### Energy resolution is dominated by leakage:

- A 24 X<sub>0</sub>, ~2 M<sub>R</sub>, lead glass crystal + PMT is used as tail catcher to recover the longitudinal leakage
- The energy resolution @ 120 GeV including the leadglass contribution → Proto-1 apport is negligible, this is a good indication for the future large-scale prototypes.







