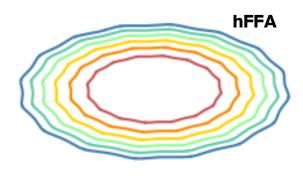
The Vertical FFA for Muon Acceleration

Max Topp-Mugglestone

Contact: <u>max.emil.topp-mugglestone@cern.ch</u>

University of Oxford / CERN

Contents


- Why FFAs?
- The vFFA
- Building a model of the vFFA
- What can we achieve with the vFFA?
 - Muon accelerator proof-of-concept lattices
- Unsolved questions
- Conclusions
- Further reading

Max Topp-Mugglestone

Why FFAs?

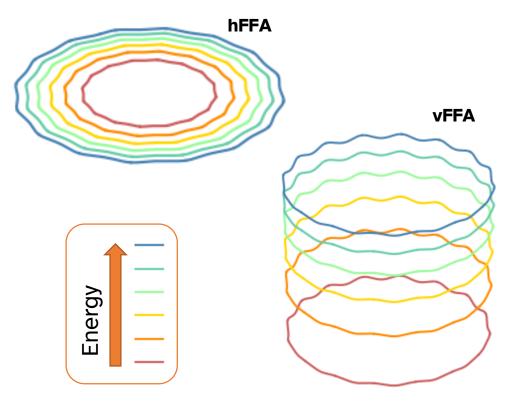
	-
λ	
Energy	
ш	

"Conventional" horizontal-excursion FFA (hFFA):

- Orbits move outwards with increasing energy
- Fields increase radially

Time-independent magnetic fields means...

- No ramp times
 - Rate of acceleration limited only by RF
 - Mitigates engineering challenges of designing and powering fast-ramping dipoles
- All magnets can be superconducting


hFFA options for muon acceleration studied in detail by J. Scott Berg (see 2023 IMCC meeting)

Max Topp-Mugglestone

Introduction to the vFFA

Vertical-excursion FFA (vFFA):

- Higher energy orbits are vertically translated copies of lower energy orbits
- Zero chromaticity if fields increase with vertical coordinate (*Z*) following scaling law

$$B = B_0 e^{mZ}$$

Zero path length difference means...

- \rightarrow Zero momentum compaction factor α_c
- \rightarrow Transitionless
- \rightarrow Quasi-isochronous for relativistic particles

S. Brooks, "Vertical orbit excursion fixed field alternating gradient accelerators," Physical Review Special Topics - Accelerators and Beams, vol. 16, 08 2013.

vFFA difficulties

• Non-planar orbits

(identified first in tracking study!)

S. Machida, D.J. Kelliher, J-B. Lagrange, and C.T. Rogers. Optics design of vertical excursion fixed-field alternating gradient accelerators Phys. Rev. Accel. Beams (2021)

- Coupled optics
 - Focussing is dominated by skew quadrupole components
- Design for vFFA muon accelerator based on FODO cells has been done as an exercise in 2019 – derived from numerical simulation

S. Machida, J-B. Lagrange, M. Topp-Mugglestone. Application of the FFA concept to a muon collider complex, Proc. IPAC 12 (2021)

- Design is unoptimized (large circumference, large required B-field)
- No analytic model, hard to understand system and means of optimisation...

(until now)

Max Topp-Mugglestone

5

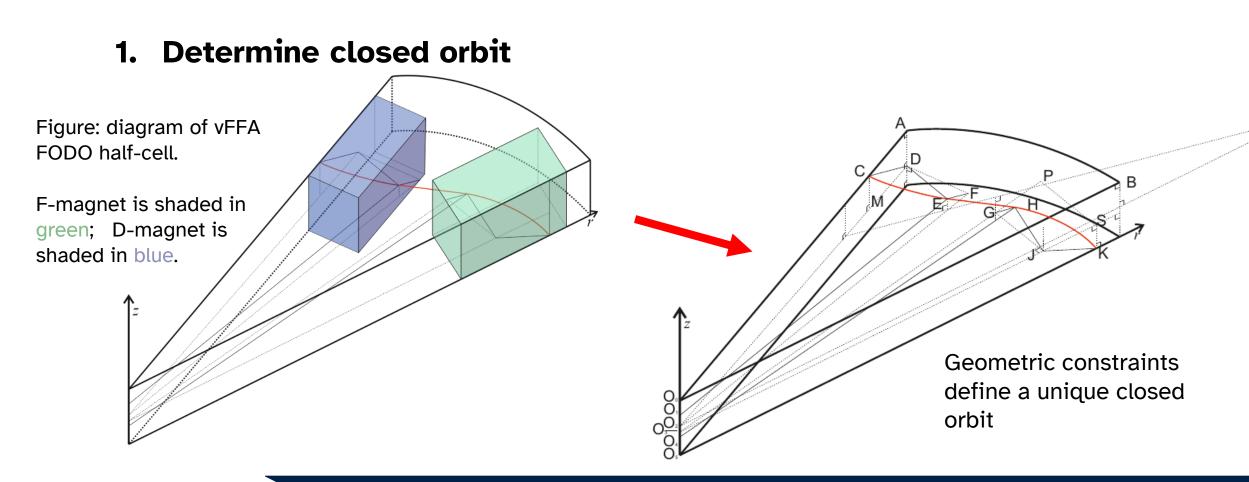
Approaching the vFFA

Building an analytic model:

1. Determine closed orbit

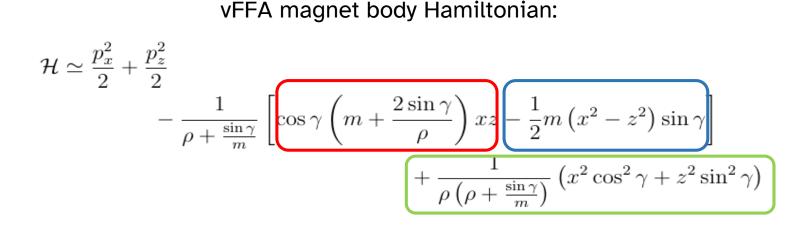
There must exist a continuum of closed orbits for all energies Closed orbits must be consistent with the fields required by the scaling law

2. Expand optics around closed orbit


Magnetic fields are all predetermined by the scaling law

Max Topp-Mugglestone

Approaching the vFFA



Approaching the vFFA

2. Expand optics around closed orbit

x, z: horizontal and vertical transverse coordinates

m : normalised field gradient

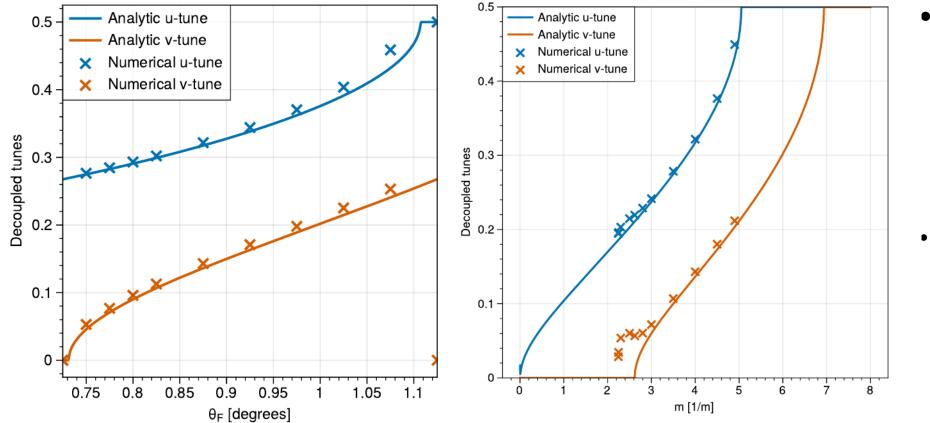
 ρ : radius of curvature (in 3D!)

 γ : a new parameter called 'inclination' (angle of the plane of curvature in a vFFA magnet)

Hamiltonian has normal quad + skew quad + geometric terms!

Max Topp-Mugglestone

vFFA linear optics recipe


- Choose set of input parameters
- Compute closed orbit geometry for lattice type (FODO, triplet, straight cell...)
- Input geometric parameters into transfer matrices derived from Hamiltonian
- Compute transfer matrix for each element of the cell

Testing the model

Agrees with simulation!

- Tested with 2019 muon accelerator lattice across different input parameters
- Divergence at low *m*-values
 - Expected behaviour due to fringe field effects
 - *m* should be large in a muon accelerator to minimise excursion

UNIVERSITY OF

What can we do with a vFFA?

"One ring to rule them all" design from 2019

One accelerator on LHC-scale to take the role of RCS1+2+3

	2019 Lattice
Circumference [m]	28350
Number of Cells	810
Injection Energy [TeV]	0.05
Extraction Energy [TeV]	1.5
F-magnet length [m]	12.0
D-magnet length [m]	12.0
Drift length [m]	5.5
Peak Dipole Field [T]	8.7
<i>m</i> -value [1/m]	6.8
Excursion [m]	0.50
Tune	(0.40,0.086)

- Large circumference (> LHC)
 - Large peak field (8.7 T)
 - Large excursion (50 cm)
 - Derived from numerical simulation

Can this design be optimised?

Let's see what the analytic model can tell us...

11

2019 lattice optimisation

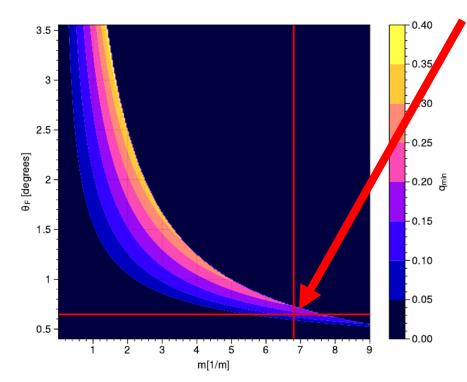
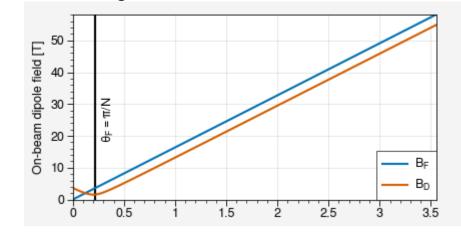



Figure: stability region as a function of m, θ_F (normalised field gradient, bending angle in F-magnet)

Original lattice configuration

• Peak fields can be decreased by decreasing θ_F whilst increasing m to maintain stability

John Adams Institute for Accelerator Science

Max Topp-Mugglestone

2019 lattice optimisation

• End result:

	2019 Lattice	Optimisation
Circumference [m]	28350	25200
Number of Cells	810	720
Injection Energy [TeV]	0.05	0.05
Extraction Energy [TeV]	1.5	1.5
F-magnet length [m]	12.0	14.5
D-magnet length [m]	12.0	9.5
Drift length [m]	5.5	5.5
Peak Dipole Field [T]	8.7	7.1
<i>m</i> -value [1/m]	6.8	7.57
Excursion [m]	0.50	0.45
Tune	(0.40,0.086)	(0.44, 0.098)

- Smaller circumference by 3.15 km
- 1.6 T smaller maximum dipole field
- 5cm smaller excursion
- Same drift length

However, excursion is still large, and circumference is greater than RCS stages

 \rightarrow What if we target the same circumferences and energy scales as the RCS chain?

Max Topp-Mugglestone

Muon vFFAs as an alternative to RCS

Proof-of-concept designs

	Stage 1 vFFA	Stage 4 vFFA
Circumference [m]	5990	35000
Number of Cells	810	1000
Injection Energy [TeV]	0.06	1.5
Extraction Energy [TeV]	0.3	5
F-magnet length [m]	6.36	18.76
D-magnet length [m]	4.24	13.12
Drift length [m]	1.05	1.56
Peak Dipole Field [T]	7.14	14.8
m-value [1/m]	30	10.44
Excursion [m]	0.048	0.12
Tune	(0.39, 0.13)	(0.41, 0.070)

- Using analytic model, we show that parameters similar to RCS1 and RCS4 can be achieved with a vFFA
 - Same footprint
 - Same energy ranges
 - Smaller peak dipole field than RCS4
 - 5cm excursion for stage 1
 - 12cm excursion for stage 4

An isochronous, fixed-field, zerochromatic muon accelerator is possible based on the vFFA technology!

Max Topp-Mugglestone

Unsolved problems...

- What is the optimum configuration for a Muon Collider complex containing a vFFA?
 - Energy ranges were optimised for RCS designs could we reoptimize to include one or more vFFAs?
- Large-aperture magnets and RF
 - Significant engineering challenge
- Injection and extraction systems...
 - Coupled optics make kicking/bumping orbit difficult

However...

15

Decoupled insertions

- Coupling effects can be (locally) negated within a straight vFFA insertion
 - Requires inclination = 90 degrees

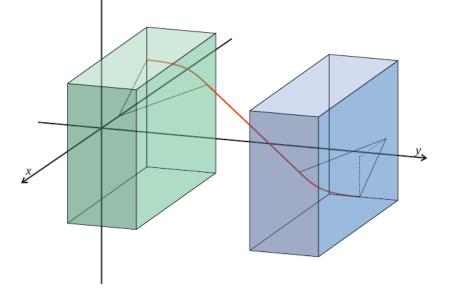
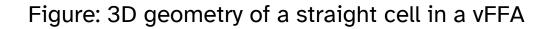


Figure: 3D geometry of a straight cell in a vFFA

The inclination angles are given by \widehat{HDE} and \widehat{AFB} for each magnet.

In a straight vFFA cell in a FODO or triplet configuration, the inclination for magnets of opposite polarity must be equal; in the special case of a 90 degree inclination this leads to a complete negation of all coupling effects within the cell.


Max Topp-Mugglestone

Decoupled insertions

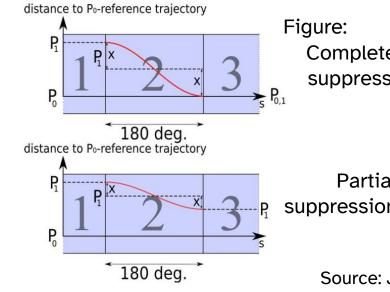
- Coupling effects can be (locally) negated within a straight vFFA insertion
 - Requires inclination = 90 degrees

М 🚬

The inclination angles are given by \widehat{HDE} and \widehat{AFB} for each magnet.

In a straight vFFA cell in a FODO or triplet configuration, the inclination for magnets of opposite polarity must be equal; in the special case of a 90 degree inclination this leads to a complete negation of all coupling effects within the cell.

Max Topp-Mugglestone


Decoupled insertions

- Coupling effects can be (locally) negated within a straight vFFA insertion
 - Requires inclination = 90 degrees

Easy (easier) design of injection and extraction systems

Dispersion suppression is possible in a decoupled straight using existing technology

 RF acceleration could be done in dispersion-suppressed straights

18

Igure: Complete dispersion suppression scheme for an FFA

Partial dispersion suppression scheme in an FFA

Source: J-B. Lagrange

Conclusions

• We now have analytic tools to understand vFFAs

• Straight cell, FODO, and triplet geometries have been studied

• vFFA FODO rings can be built with

 Equivalent footprint to RCS designs · Achievable dipole fields · Fully superconducting magnets · Small orbit excursion
...for an energy-efficient, zero-chromatic, isochronous accelerator

Coupling effects can be negated in straights

- Could help solve injection/extraction issues + dispersion suppression
- More research needed to realise the vFFA alternative to RCS in context of a full facility design!

Further reading

vFFA concept

• Original rediscovery by S. Brooks

S. Brooks, "Vertical orbit excursion fixed field alternating gradient accelerators," Physical Review Special Topics - Accelerators and Beams, vol. 16, 08 2013.

vFFA modelling

• My PhD thesis (forthcoming!!)

vFFA numerical studies

- Numerical studies of linear optics and DA by M. Vanwelde M. Vanwelde, C. Hernalsteens, and N. Pauly, "Linear and nonlinear beam dynamics of vertical fixed-field accelerators," Phys. Rev. Accel. Beams, vol. 27, p. 024003, Feb 2024.
- Machine Learning approach by A. Oeftiger

A. Oeftiger, A. Santamaría García, J.-B. Lagrange, and S. Hirlander, "Active deep learning for nonlinear optics design of a vertical ffa accelerator," IPAC2023, WEPA026

Max Topp-Mugglestone

