NEW µ FORCES FROM UJU SOURCES

Cari Cesarotti MIT CTP Postdoc Fellow IMCC 2024 - Physics Session

NASSACHUSET

CTE OF TECHNO

MARCH 14, 2024

A quick reminder of what makes muon colliders so special:

High Energy

Now is the time to think creatively about what new theories we can probe

Second Generation Particles

The commonality between these two works is *muon-specific* couplings, but illustrate a few ways in which we can search for new physics

The commonality between these two works is *muon-specific* couplings, but illustrate a few ways in which we can search for new physics

New μ forces from ν_{μ} sources

CC, Kahn, Krnjaic, Rocha, Spitz '23

Physics from proton beam at MuC?

The commonality between these two works is *muon-specific* couplings, but illustrate a few ways in which we can search for new physics

New μ forces from ν_{μ} sources

CC, Kahn, Krnjaic, Rocha, Spitz '23

Physics from proton beam at MuC?

Leptophilic Dark Matter at Future Lepton Colliders

CC, Krnjaic (WIP)

Physics from collisions of leptons

A muon collider necessitates a proton source.

This work can be considered **proof-ofconcept** for possible future demonstrators, staging options, or full MuC collider

> (Or as stand-alone result that's interesting because of muons) CC, Kahn, Krnjaic, Rocha, Spitz '23 6

SOURCES

Is there any new physics we can probe with minimal instrumentation?

EXISTING ν ,

Whenever we have ν sources (from proton-on-target), there are **muons** We consider Mini/MicroBooNE, but one could also consider $ESS\nu$ SB, DUNE, etc.

Just Recast!

E

 $\mathscr{L}_{eff} \supset \frac{y}{v} SH^{\dagger}L\mu_{R}^{c} + hc$ $\mathcal{L}_{int} \supset y S \mu \bar{\mu}$

$\mathscr{L}_{UV} \supset y_{\psi} H^{\dagger} L_2 \psi^c + \kappa \psi \mu^c + (M_{\psi} + y'S) \psi \bar{\psi} + hc$

E

 $\mathcal{L}_{eff} \supset \overset{y}{-} SH^{\dagger}L\mu_{R}^{c} + hc$ JJ

IUON-PHILIC FORCES

New vector-like fermion $+\psi \sim (1,1)_1$

 $\mathcal{L}_{int} \supset y S \mu \bar{\mu}$

 $\mathscr{L}_{UV} \supset y_{\psi} H^{\dagger} L_2 \psi^c + \kappa \psi \mu^c + (M_{\psi} + y'S) \psi \bar{\psi} + hc$ New vector-like fermion $E \ll M_{\psi}$ E $+\psi \sim (1,1)_1$ $\mathcal{L}_{eff} \supset \frac{y' y_{\psi} \kappa}{M_{\psi}^2} SH^{\dagger} L \mu_R^c + hc$ (SSB) $\mathcal{L}_{int} \supset y S \mu \bar{\mu}$

. .

Rare decays of mesons

SIGNATURES WITH PROTON BEAM-ON-TARGET

 $\mathscr{L}_{int} \supset yS\mu\bar{\mu}$

Dump

Scattering of muons in material

Booster

500 m

(Upgrade to Micro) $\sim SBND$

Chen, Pospelov, Zhong '17

Immediate recast is possible because the BooNEs measured neutrino induced NC π^0 production, with $m_{\gamma\gamma}$ reported

$$\nu_{\mu}N \rightarrow \nu_{\mu}N\pi^0(\pi^0 \rightarrow \gamma\gamma)$$

We have our data set and our background!

MiniBooNE / MicroBooNE results SBND (set to run this year?) sensitivity

See if this kind of experiment is compatible with MuC proton beam or ν facility

PART II: NEW µ FORCES FROM µ SOURCES

 $\mathcal{L}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu}$

D'Ambrosio, Giudice, Isidori, Strumia '02

- Let's shift our attention from muon-philic forces to MFV forces
- The coupling of a new particle to leptonic sector are proportional to the Higgs SM Yukawa couplings

$$\sum_{u,\tau} g_l l\bar{l} \qquad g_l = g_e \frac{m_l}{m_e}$$

PART II: NEW µ FORCES FROM µ SOURCES

Type III 2HDM

E

 $\mathscr{L} \supset \lambda_u H_1 Q \bar{u} + \lambda_d Q H_1^{\dagger} Q \bar{d} + \lambda_\ell H_2 L \bar{e}$ $V(H_1, H_2, S) = S\left(\mu_{11}H_1^{\dagger}H_1 + \mu_{12}\right)$

Each get vev v_1, v_2

 \mathscr{L}_{int} -

 $H_1 \sim (1,2)_{1/2}$ $H_2 \sim (1,2)_{-1/2}$

$$_{2}H_{1}^{\dagger}H_{2} + \mu_{12}^{*}H_{2}^{\dagger}H_{1} + \mu_{22}H_{2}^{\dagger}H_{2} + S \sim (1,1)_{0}$$

Diagonalize into SM Higgs h and heavy Higgs H

Work in regime of parameters, esp $\tan\beta \equiv \frac{v_2}{-} \gg 1$

$$\sum -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l} \qquad g_l = g_e \frac{m_l}{m_e}$$

Leptophilic Dark Matter

RELIC ABUNDANCE OF LEPTOPHILIC DM

 $\mathcal{L}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$

Leptophilic Dark Matter

$$\mathcal{L}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$$

Leptophilic Dark Matter

Thermal Target

 $\mathcal{L}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum g_l l\bar{l}$ $l=e,\mu,\tau$

Solve Boltzmann Equation

 $\dot{n}_{\gamma} + 3Hn_{\gamma} = -\langle \sigma v \rangle [n_{\gamma}^2 - (n_{\gamma}^{\text{eq}})^2]$

 $\sigma v_{\chi\chi \to \ell\ell} = \frac{g_{\chi}^2 g_{\ell}^2 m_{\chi}^2 v^2}{8\pi (m_{\varphi}^2 - 4m_{\chi}^2)^2} \propto g_{\chi}^2 g_{\ell}^2 \left(\frac{m_{\chi}}{m_{\varphi}}\right)^2 \frac{1}{m_{\chi}^2}$

CC, Krnjaic '24 (to come)

 10^{3}

 10^{3}

 $\mathcal{U}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$

B Factories

 $e^+e^- \rightarrow \mu^+\mu^-\phi$

(Dimuon + missing energy)

Belle II Collaboration 2212.03066

 $\mathcal{L}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$

Muon g-2

 10^{3}

Muon *g-2* 2311.08282 CC, Krnjaic '24 (to come)

BOUNDS FROM FCCEE

Tera-Z run at FCCee can also set significant bounds from rare Z decays

Bound set by uncertainty in BR

$$\frac{g_{\chi}}{2}\varphi_{\chi\chi} - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$$

Strongest bound set by couplings to $Z \rightarrow \tau \tau$

BOUNDS FROM FCCEE

Tera-Z run at FCCee can also set significant bounds from rare Z decays $\mathscr{L}_{int} \supset -\frac{g_{\lambda}}{2}$

Bound set by uncertainty in BR

$$\frac{f_{\chi}}{2}\varphi\chi\chi - \varphi\sum_{l=e,\mu,\tau}g_{l}l\bar{l}$$

Strongest bound set by couplings to $Z \rightarrow \tau \tau$

Previous LEP: $(1.7 \times 10^7 Z's)$ $\Gamma(Z \rightarrow \tau \tau) = 84.08 \pm 0.22 \text{ MeV}$

FCCee Tera-Z: $(10^{12} Z's)$ Assume primary improvements come from statistics $\Delta\Gamma \times \sqrt{N_{LEP}/N_{FCC}}$

BOUNDS FROM FCCEE

Tera-Z run at FCCee can also set significant bounds from rare Z decays

$$\frac{g_{\chi}}{2}\varphi_{\chi\chi} - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$$

$2\sigma \text{ in } \Delta\Gamma(Z \to \tau\tau)$

For Muon Collider, our sensitivity is going to be to heavy states.

 $\mathcal{L}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$

For Muon Collider, our sensitivity is going to be to heavy states.

Primary Background: $\mu^+\mu^- \rightarrow \nu \bar{\nu} \gamma$

$$\frac{f_{\chi}}{2}\varphi\chi\chi - \varphi\sum_{l=e,\mu,\tau}g_{l}l\bar{l}$$

 $\sqrt{s} = 3 \text{ TeV}$ $\sigma_E = 3\%$ $\mathscr{L} = 1 \mathrm{ab}^{-1}$ $|\eta| < 2.5$

Image: Krnjaic

For Muon Collider, our sensitivity is going to be to heavy states.

 $\mathcal{L}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$

For Muon Collider, our sensitivity is going to be to heavy states.

 $\mathcal{L}_{int} \supset -\frac{g_{\chi}}{2}\varphi\chi\chi - \varphi \sum_{l=e,\mu,\tau} g_l l\bar{l}$

As is the theme of this workshop, a Muon Collider should be used to study heavy states!

- We should *modestly* instrument any extra beam (e.g. the chopper at Fermilab) to fully utilize the physics program at MuC
 - For Muon Collider, our sensitivity is going to be to heavy states.
 - FCCee and MuC can probe *different* physics

- We should *modestly* instrument any extra beam (e.g. the chopper at Fermilab) to fully utilize the physics program at MuC
 - For Muon Collider, our sensitivity is going to be to heavy states.
 - FCCee and MuC can probe *different* physics

Back ups

