Probing Higgs-Muon Interactions at Multi-TeV Collider

Yang Ma

INFN, Sezione di Bologna

March 14th, 2024 IMCC and MuCol Annual Meeting

Theory and Phenomenology of Fundamental Interactions

INIVERSITY AND INFN · BOLOGNA

General picture of future multi-TeV lepton colliders $\odot \odot$

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology 00000000 Summary and prospects

A possible multi-TeV lepton collider is cool!

General picture of future multi-TeV lepton colliders $\bigcirc \bullet \bigcirc$

Muon Yukawa at muon colliders

From the EFT point of view

sp [TeV]

500

gg

Phenomenology 00000000

muC@10 TeV $\sim pp@70$ TeV

Summary and prospects

100

A multi-TeV lepton collider is amazing

- $\ell^+\ell^-$ annihilation probes TeV scale directly
- VBF scans physics in the full spectrum of energy

√su [TeV]

From the threshold to up to 2 orders of magnitude above EW scale.

• It produces a lot of H, top quarks, W/Z, ... as a "factory" for SM precision test

An "EW jet factory"

In addition to QCD jets, there are W/Z jet, H jet, t jet, neutrino jet, \cdots

Even neutrino collision is not impossible!

Challenges:

Be careful about the radiation!

EW NLO shall be necessary, just like the NLO QCD at LHC.

General picture of future multi-TeV lepton colliders $\circ \circ \bullet$

Muon Yukawa at muon colliders

From the EFT point of view $_{\rm OOO}$

Phenomenology 00000000 Summary and prospects O

The full picture a multi-TeV lepton collider: An electroweak LHC

- All SM particles are partons
- We are allowed to determine the partons with their different polarizations

The EW parton luminosities of

Just like in hadronic collisions:

 $\mu^+\mu^- \rightarrow {\rm exclusive \ particles} + {\rm remnants}$

[T. Han, Y. Ma and K. Xie, Phys. Rev. D103 (2021) L031301, 2007.14300] [T. Han, Y. Ma and K. Xie, JHEP 02 (2022) 154, 2103.09844]

INFN

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology 00000000 Summary and prospects

It is the first time we play with another flavor

One example in precision physics: The Muon-Higgs Coupling

[T. Han, W. Kilian, N. Kreher, YM, T. Striegl, J. Reuter, and K. Xie, 2108.05362]

[E. Celada, T. Han, W. Kilian, N. Kreher, YM, F. Maltoni, D. Pagani, T. Striegl, J. Reuter, and K. Xie, 2312.13082]

- Physics: We actually do not know whether the SM mass-generation mechanism applies just to the heavy particles, or also to the 1st/2nd generations.
- ► Logical possibility: Muon mass not (only) generated by SM Higgs. ⇒ Why not have an arbitrary Yukawa coupling?

Muon Yukawa at muon colliders

From the EFT point of view

henomenology

Summary and prospects

Multi-boson final states and the Muon-Higgs coupling Take a quick in the κ framework

- SM: λ (Muon Higgs) ~ $y_{\mu}^{\rm SM} = \sqrt{2}m_{\mu}^{\rm SM}/v$
- Possible BSM physics: $m_{\mu} = m_{\mu}^{\text{SM}}$, $\lambda(\text{Muon} \text{Higgs}) \sim \kappa_{\mu} y_{\mu}^{\text{SM}}$, e.g. $\kappa_{\mu} = 0$

Three-boson final states

New physics signal shows up in the high energy region

[T. Han, W. Kilian, N. Kreher, YM, T. Striegl, J. Reuter, and K. Xie, 2108.05362]

Muon Yukawa at muon colliders

From the EFT point of view $_{\rm OOO}$

Phenomenology 00000000 Summary and prospects

WWH at a 10 TeV muon collider: Kinematics

- Background (VBF) is much larger than signal (annihilation)
- VBF events accumulate around threshold, and mostly forward
- \blacktriangleright Annihilation in the rest frame (central, and $M\sim \sqrt{s}$ spread by ISR)
- \blacktriangleright Annihilation also has forward dominance, due to the gauge splitting W
 ightarrow WH

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology 00000000 Summary and prospects

WWH at a 10 TeV muon collider: Cuts

Cut flow	$\kappa_{\mu} = 1$	m w/o~ISR	$\kappa_{\mu} = 0 \ (2)$	CVBF	NVBF	
σ [fb]	WWH					
No cut	0.24	0.21	0.47	2.3	7.2	
$M_{3B} > 0.8\sqrt{s}$	0.20	0.21	0.42	$5.5\cdot 10^{-3}$	$3.7\cdot10^{-2}$	
$10^{\circ} < \theta_B < 170^{\circ}$	0.092	0.096	0.30	$2.5\cdot 10^{-4}$	$2.7\cdot 10^{-4}$	
$\Delta R_{BB} > 0.4$	0.074	0.077	0.28	$2.1\cdot 10^{-4}$	$2.4\cdot 10^{-4}$	
# of events	740	770	2800	2.1	2.4	
S/B			2.8			

• Integrated luminosity $\mathcal{L} = (\sqrt{s}/10 \,\,\mathrm{TeV})^2 \cdot 10 \,\mathrm{ab^{-1}}$ [1901.06150]

•
$$S = N_{\kappa\mu} - N_{\kappa\mu=1}, B = N_{\kappa\mu=1} + N_{\text{VBF}}.$$

- VBF and ISR are mostly excluded by invariant mass cut.
- Angular cut also weaken VBF further.

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology

Summary and prospects

A more proper parameterization: HEFT in the unitary gauge

[E. Celada, T. Han, W. Kilian, N. Kreher, YM, F. Maltoni, D. Pagani, T. Striegl, J. Reuter, and K. Xie, 2312.13082]

Introduce the form factors α_n , β_n

$$y_{\mu,n} = rac{\sqrt{2}m_{\mu}}{v} lpha_n, \ f_{V,n} = eta_n \lambda$$

In the unitary gauge, the HEFT formalism can be simplified to

$$\mathcal{L} \supset -\frac{m_H^2}{2}H^2 - m_\mu \bar{\mu}\mu - \sum_{n=3}^\infty \beta_n \frac{\lambda}{v^{n-4}} H^n - \sum_{n=1}^\infty \alpha_n \frac{m_\mu}{v^n} H^n \bar{\mu}\mu$$

The regular " κ framework" is extended to include more vertices

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology 00000000 Summary and prospects O

Interpret the EFT formalism: HEFT VS SMEFT

• Nonlinear HEFT gives $\kappa_{\mu}=rac{v}{\sqrt{2}m_{\mu}}y_{1}$ [Coleman et al., PR1969, Weinberg, PLB1980, \cdots]

$$\mathcal{L}_{UH} = \frac{v^2}{4} \operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] F_U(H) + \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - V(H) \\ - \frac{v}{2\sqrt{2}} \left[\bar{\ell}_L^i \tilde{Y}_\ell^{ij}(H) U \left(1 - \tau_3\right) \ell_R^j + \text{h.c.} \right]$$

with F_U, V, \tilde{Y} expanded as

$$F_{U}(H) = 1 + \sum_{n \ge 1} f_{U,n} \left(\frac{H}{v}\right)^{n}, V(H) = v^{4} \sum_{n \ge 2} f_{V,n} \left(\frac{H}{v}\right)^{n}, \tilde{Y}_{\ell}^{ij}(H) = \sum_{n \ge 0} \tilde{Y}_{\ell,n}^{ij} \left(\frac{H}{v}\right)^{n}$$

Linear SMEFT [Weinberg PRL1979, Abbott & Wise PRD1980, · · ·]

$$\mathcal{L} \supset -\sum_{n=1}^{\infty} \frac{c_{\varphi}^{(2n+4)}}{\Lambda^{2n}} \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^{n+2} - \sum_{n=1}^{\infty} \frac{c_{\ell\varphi}^{(2n+4)}}{\Lambda^{2n}} \left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^n \left(\bar{\ell}_L \varphi e_R + \text{ h.c.}\right) \text{ (Interpreted to the second seco$$

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology

Summary and prospects

Relate the EFTs

α_1	=	$1 + \frac{v^3}{\sqrt{2}m_{\mu}} \frac{c_{l\varphi}^{(6)}}{\Lambda^2} + \frac{v^5}{\sqrt{2}m_{\mu}} \frac{c_{l\varphi}^{(8)}}{\Lambda^4} + \frac{3v^7}{4\sqrt{2}m_{\mu}} \frac{c_{l\varphi}^{(10)}}{\Lambda^6} ,$
α_2	=	$\frac{3v^3}{2\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(6)}}{\Lambda^2} + \frac{5v^5}{2\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(8)}}{\Lambda^4} + \frac{21v^7}{8\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(10)}}{\Lambda^6},$
α_3	=	$\frac{v^3}{2\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(6)}}{\Lambda^2} + \frac{5v^5}{2\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(8)}}{\Lambda^4} + \frac{35v^7}{8\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(10)}}{\Lambda^6}$
α_4	=	$\frac{5v^5}{4\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(8)}}{\Lambda^4} + \frac{35v^7}{8\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(10)}}{\Lambda^6},$
α_5	=	$\frac{v^5}{4\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(8)}}{\Lambda^4} + \frac{21v^7}{8\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(10)}}{\Lambda^6} ,$
α_6	=	$\frac{7v^7}{8\sqrt{2}m_{\mu}}\frac{c_{l\varphi}^{(10)}}{\Lambda^6},\ \ \alpha_i=\frac{v}{\sqrt{2}m_{\mu}}y_{l,i},$

Muon Yukawa at muon colliders

From the EFT point of view

Summary and prospects

Processes in consideration

 $\mu^+\mu^-$ annihilations

V H	0	1	2	3	4	5
0	-	Ζ	Z^2, W^2	$Z^3 \ W^2 Z$	$Z^4,W^4 \ W^2 Z^2$	$Z^5, W^2 Z^3 \ W^4 Z$
1	H	ZH	$W^2 H \ Z^2 H$	$W^2 Z H \ Z^3 H$	$W^4H,Z^4H\ W^2Z^2H$	-
2	H^2	ZH^2	$W^2 H^2 \ Z^2 H^2$	$W^2 Z H^2 \ Z^3 H^2$	-	-
3	H^3	ZH^3	$W^2 H^3 \ Z^2 H^3$	-	-	-
4	H^4	ZH^4	-	-	-	-
5	H^5	-	-	-	-	-

[E. Celada, T.Han, W.Kilian, N. Kreher, YM, F. Maltoni, D. Pagani, J. Reuter, T. Striegl, and K.Xie, 2312.13082]

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology 0000000 Summary and prospects

Start from the simplest

Processes depend on α_1 only: ZH production and 3V production

- The normal κ framework is good enough
- The sign of the muon Yukawa coupling (α_1) can be measured

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology

Summary and prospects

Multi-Higgs production processes: $\mu^+\mu^- \rightarrow nH$

- The cross sections are insensitive to Higgs self-couplings (β_{3,4}).
- One could directly measure $\mu\mu nH$ vertices (α_n) with the *n*-Higgs production
- ► In dim-6 SMEFT $\Delta \alpha_1 = 2\alpha_2/3 = 2\alpha_3$ ⇒ precisely measure c_6/Λ^2 via 2H 3H production.

Muon Yukawa at muon colliders

From the EFT point of view $_{\rm OOO}$

Phenomenology

Summary and prospects

Higgs associated gauge boson production

Constrain (α_1, α_2) simultaneously: e.g. WWH, ZZH, ZHH

Weak dependence on Higgs self-couplings (β₃)
 The α_{1,2} dependence is much stronger at 10 TeV

LINE Factor of Tato Andere

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology 00000000 Summary and prospects

Multi gauge boson production

Constrain (α_1, α_2) at 10 TeV : e.g. WWZZ, 4Z, 5Z

Weak dependence on Higgs self-couplings (β₃)
 The α_{1,2} dependence is much stronger at 10 TeV

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology 00000000 Summary and prospects

There are more processes

α_3 dependence also shows up: e.g. HHZZ, HHZZZ, HZZZZ

• Constrain $(\alpha_1, \alpha_2, \alpha_3)$ simultaneously

Muon Yukawa at muon colliders

From the EFT point of view 000

Phenomenology 00000000 Summary and prospects

Combine the constrains on (α_1, α_2)

• Guaranteed to measure the sign of the muon Yukawa coupling α_1

- ▶ The 10 TeV machine can do much better than the 3 TeV machine does
- With assumption $\alpha_3 = 0$, one could further improve the measurement on α_1 and α_2 .

Muon Yukawa at muon colliders

From the EFT point of view

Phenomenology 0000000 Summary and prospects O

What if $\alpha_1 = 1$?

- $\blacktriangleright~$ The $\mu\mu H$ could be measured well at other colliders , e.g. HL-LHC or FCC-ee
- We could assume $\alpha_1 = 1$ and focus on the anomalous interactions
- Note this breaks the dim-6 SMEFT

Muon Yukawa at muon colliders

From the EFT point of view

henomenology

Summary and prospects

Summary and prospects

- Multi-TeV lepton colliders are amazing:
 - A new energy frontier to go beyond the LHC: An EW LHC
 - Our first time to play with another flavor
- We explored the new opportunity to measure the Higgs-muon interactions at the future muon collider
 - The κ framework is not enough, so we introduce α_n to denote the $\mu\mu nH$ vertices
 - The sign of the SM muon Yukawa coupling (α_1 could be measured), which cannot be done at the other machines
 - The n-Higgs production processes could directly measure $lpha_n$
 - (α_1, α_2) dependence shows up together in most processes, we measure them simultaneously
 - With some assumptions, e.g. $lpha_3=0$ or $lpha_1=1$, we could further improve the constraints

