Analysis of the Material Budget

Friederike Bock

Physikalisches Institut Heidelberg

March 24, 2011

- 1 Introduction
- 2 Resolution
- **3** Material Mapping with Conversions
- 4 Material Budget discrepancies in $|\eta| < 1.4$
- **5** Investigations of the material Budget $|\eta| < 1.4$ for ϕ in different *R*-bins
- 6 Investigations of the material Budget $|\eta| < 1.4$ for ϕ in different Z-bins
- 7 Investigations of the material Budget $|\eta| < 1.4$ for ϕ in different Z-bins
- 8 Investigations of the material Budget $|\eta| < 1.4$ for R in different Z-bins

Introduction

What are photon conversions?

- γ conversion into e⁺ and e⁻ (pair creation)
- \blacksquare Number of observed γ

$$N_{\gamma}^{ob} = N_{\gamma}^{prod} \cdot \textit{ConvProb} \cdot \epsilon_{\gamma}^{\textit{rec}}$$

 \blacksquare Number of produced γ

$$\mathcal{N}_{\gamma}^{prod} = \mathcal{N}_{\gamma}^{\pi^0} + \mathcal{N}_{\gamma}^{\eta} + \mathcal{N}_{\gamma}^{\omega} + \mathcal{N}_{\gamma}^{\eta'} + \mathcal{N}_{\gamma}^{\phi}$$

Conversion probability

 $\textit{ConvProb} = \frac{\#\textit{Converted Photons}}{\#\textit{all photons}}$

Introduction

R bin	R range (cm)	Detectors
00	0-3.5	beam pipe
01	3.5 - 5.75	SPD1
02	5.75 - 9.5	SPD2
03	9.5-13	Thermal shield/ Support
04	13-21	SDD1
05	21 - 27.5	SDD2
06	27.5-35	Thermal shield / Support
07	35-42	SSD1
08	42-55	SSD2
09	55-72	Air + TPC inner containment vessel + $C0_2$
		$(+ITS \; services \; at \; \eta < 1.4)$
10	72-79.5	$CO_2 + TPC$ inner field cage vessel + Ne: CO_2 :N ₂
		$(+ITS \; services \; at \; \eta < 1.4)$
11	79.5-90	TPC rods + $Ne:C0_2:N_2$
12	90-180	$Ne:CO_2:N_2$

Introduction

Definition of Zbins

Z bin	Z range (cm)
00	-500,-200
01	-200, -100
02	-100, -50
03	-50, -30
04	-30, -15
05	-15,0
06	0,15
07	15,30
08	30,50
09	50,100
10	100,200
11	200,500

Resolution

Spatial Resolution of the Conversion Method: ϕ - Resolution

Figure: Spatial resolution of the conversion point in ϕ versus the radial position R. Upper plot: mean of the different slices in R and lower plot: ϕ -resolution at given R.

- Spatial Resolution obtained using flat pt Monte Carlo production
- *p*_t-resolution influences spatial resolution, for real data different contribution of higher *p*_t with less resolution
- Resolution in ϕ at different R better than 2.5 mrad

Resolution

Spatial Resolution of the Conversion Method: *Z*- Resolution

Figure: Spatial resolution of the conversion point in ϕ versus the radial position R. Upper plot: mean of the different slices in R and lower plot: Z-resolution at given R.

- Using onfly V0 reconstruction, but recalculating the conversion point with the condition, that at the conversion point electron and positron track have to be parallel
- Resolution in Z at different R better than 1.5 cm

Resolution

Spatial Resolution of the Conversion Method: *R*- Resolution

Figure: Spatial resolution of the conversion point in ϕ versus the radial position R. Upper plot: mean of the different slices in R and lower plot: R-resolution at given R.

- Using onfly V0 reconstruction, but recalculating the conversion point with the condition, that at the conversion point electron and positron track have to be parallel
- Resolution in R at different R better than 3 cm

- MC : LHC10f6a (Pythia)
- Data: LHC10d

2 dimensional maps (Data)

R- and Z-distributions

Material Budget discrepancies in $|\eta| < 1.4$

2 dimensional Ratio Data/MC

ITS ($|\eta| < 1.4$): ϕ - distribution at different R positions

ITS ($|\eta| < 1.4$): ϕ - distribution at different R positions

ITS + TPC ($|\eta| < 1.4$): ϕ - distribution at different R positions

TPC ($|\eta| < 1.4$): ϕ - distribution at different R positions

ϕ - distribution at different Z positions

Investigations of the material Budget $|\eta| < 1.4$ for ϕ in different Z-bins

ϕ - distribution at different Z positions

F. Bock (PI Heidelberg)

ϕ - distribution at different Z positions

$\phi\text{-}$ distribution at different Z positions with R cut: 0 < R < 30 cm

$\phi\text{-}$ distribution at different Z positions with R cut: 0 < R < 30 cm

$\phi\text{-}$ distribution at different Z positions with R-cut: 50 < R < 80 cm

$\phi\text{-}$ distribution at different Z positions with R-cut: 50 < R < 80 cm

- Data

MC

Investigations of the material Budget $|\eta| < 1.4$ for ϕ in different Z-bins

$\phi\text{-}$ distribution at different Z positions with R-cut: 50 < R < 80 cm

ITS ($|\eta| < 1.4$): Z- distribution at different R positions (Ratio Data/MC)

ITS ($|\eta| < 1.4$): Z- distribution at different R positions (Ratio Data/MC)

ITS +TPC ($|\eta| < 1.4$): Z- distribution at different R positions (Ratio Data/MC)

TPC ($|\eta| < 1.4$): Z- distribution at different R positions (Ratio Data/MC)

R- distribution at different Z positions

R- distribution at different Z positions

R- distribution at different Z positions

