Some topics of proton driver complex

Shinji Machida, STFC/Rutherford Appleton Laboratory

WP3 Proton Driver Complex Meeting #12

15 December 2023

ISIS Neutron and Muon Source

Outline

- Goal and issues
- Flexible Momentum Compaction (FMC) lattice
- Bunch rotation fundamentals
- Another way of creating a short bunch

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Goal and issues

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

X O @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Goal of a proton driver complex

Create a short proton bunch at 5, 10 GeV or energy in between.

- Repetition rate = 5 Hz
- Beam power = 2 MW
 - 5x10¹⁴ ppp at 5 GeV
 - 2.5x10¹⁴ ppp at 10 GeV
- Bunch length = 2 ns (rms)

With **accumulator** ring and **compressor** ring after injector linac

Issues of accumulator

- Injection
 - Charge exchange injection by foil or laser
 - Laser stripping should be a baseline.
 - and SNS (1-1.3 GeV).
- (microwave) instabilities
 - Isochronous
 - no spread of the revolution frequency
 - Small momentum spread
 - sextupole does not make much tune spread
 - 2000 turns (only).
 - No issue if the growth time is longer.

High injection energy (5 or 10 GeV) makes the system easier than J-PARC (0.4 MeV)

Issues of compressor

- Compress bunch
 - High RF voltage to rotate a bunch in phase space
 - Synchrotron tune depends on amplitude
 - Nonlinear RF waveform
 - Higher order momentum compaction factor
- Space charge effects
 - Very small bunching factor after phase rotation.
 - Both transverse and longitudinal have space charge effects.

"Baseline" scheme

CERN scheme

- Accumulator
 - Small eta (or zero, i.e. isochronous) ring to keep the bunch structure.
- Compressor
 - Large eta ring with the enough RF voltage rotates the long bunch quickly.

Fermilab scheme

- Accumulator
 - Large eta ring to suppress microwave instability.
- Compressor
 - Small eta ring to reduce requirements of the RF voltage but with longer time.

(half) bucket height

$$B_h = \sqrt{\frac{2eV}{h\pi\beta^2 E\eta}}$$

Science and Technology **Facilities** Council

Control of eta (and its higher order) is the key of the PD rings design.

Synchrotron tune
$$Q_s = \sqrt{\frac{heV\eta}{2\pi\beta^2 E}}$$

FMC lattice

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

X O @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Flexible Momentum Compaction (FMC) lattice e.g. J-PARC RCS and MR

Figure 1: Beam optics functions of the module in arc section of the JHF 50 GeV main ring. $\beta_x^{1/2}$:solid line, $\beta_u^{1/2}$:dashed line.

Other harmonic *a_k* can be large by particular arrangement of dipole (rho) and/or quadrupole (phi).

(Looks similar to a Double Bend Achromat lattice.)

J-PARC RCS *like* lattice (3 fold symmetry)

x 2 + straight section = 100 m per super period (3 fold sym -> total 300 m.)

- MAD-X 5.08.01 12/12/23 15.01.28 80. 100.
- J-PARC RCS is total 348.333 m because straight section is longer by one more FODO cell.
- J-PARC RCS lattice has 7 families of quadrupole to make a proper matching.
- Here I used only QF and QD.

J-PARC RCS *like* lattice (3 fold symmetry) change quadrupole strength

 $D_{x}(m), \beta_{x}(m), \beta_{y}(m)$

 $D_{k}(m), \beta_{k}(m), \beta_{y}(m)$

11

4 fold symmetry

x 2 + straight section = **100 m** per super period $(3 \text{ fold sym} \rightarrow \text{total } 300 \text{ m.})$

x 2 + straight section = 75 mper super period (4 fold sym -> total 300 m.)

12

 $D_{x}(m), \beta_{x}(m), \beta_{y}(m)$

My proposal is 4 fold symmetry lattice for AR and CR (300 m)

 $D_{x}(m), \beta_{x}(m), \beta_{y}(m)$

eta ~ 0 (5.738, 6.358)

Science and Technology Facilities Council Transverse tune and beta beating can be optimised by introducing more families of quadrupole (J-PARC RCS has 7 families).

eta ~ -0.025 (6.977, 7.727)

Further investigation

- If the lattice of AR and CR is identical only with different momentum compaction factor,

 - The same technique of the transition jump scheme should work
 - but some issues, e.g. matching.
- If the pulse magnets idea do not work,

• Can we change the optics from AR to CR by pulse quadrupoles while the beam is circulating?

• Is it a good idea to make two identical lattice for AR and CR, but operate differently?

Fermilab scheme

Higher order of eta

Phase rotation will inevitably increase momentum spread.

- Chromaticity correction
- Higher order momentum compaction factors

$$\begin{aligned} \frac{\Delta\omega}{\omega_0} &= -\left(\eta_0 + \eta_1 \delta + \eta_2 \delta^2 + ...\right) \\ \eta_0 &= \left(\alpha_0 - \frac{1}{\gamma_0^2}\right) \quad \eta_1 = \frac{3\beta_0^2}{2\gamma_0^2} + \alpha_1 - \alpha_0 \eta_0 \\ \eta_2 &= -\frac{\beta_0^2 \left(5\beta_0^2 - 1\right)}{2\gamma_0^2} + \alpha_2 - 2\alpha_0 \alpha_1 + \frac{\alpha_1}{\gamma_0^2} + \alpha_0^2 \eta_0 - \frac{3\beta_0^2 \alpha_0}{2\gamma_0^2} \\ R &= R_0 \left(1 + \alpha_0 \delta + \alpha_1 \delta^2 + ...\right) \end{aligned}$$

All order of the moment compaction factor is zero in vFFA.

• Sextuple, octupole, ... can correct it to some extent in any lattice.

Bunch rotation fundamentals

Science and Technology Facilities Council KK

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

X O @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Conservation of longitudinal emittance

 $\varepsilon_L = \Delta t \Delta E \propto \Delta t \left(\Delta p / p \right)$

c.f. Revolution time of a 300 m ring is ~1000 ns.

	Initial width	Initial dp/ p	Final width	Fial dp/p	Bı he
	+/- 500 ns	+/- 0.01%	+/- 5 ns	+/- 1%	+/-
(1)	+/- 500 ns	+/- 0.1%	+/- 5 ns	+/- 10%	+/-
(2)	+/- 250 ns	+/- 0.1%	+/- 5 ns	+/- 10%	+/-
(3)	+/- 250 ns	+/- 0.2%	+/- 5 ns	+/- 10%	+/-

$$\Delta p_f \propto \frac{\varepsilon_L}{\Delta t_f} = \frac{r\Delta t_i^2}{\Delta t_f} \quad \text{where} \quad r = \frac{\Delta p_i}{\Delta t_i}$$
$$B_h \propto \Delta p_f \frac{T_{rev}/2}{\Delta t_i}$$
$$B_h \propto \frac{T_{rev}/2}{\Delta t_f} r\Delta t_i \left(= \frac{T_{rev}/2}{\Delta t_f} \Delta p_i \right)$$

Required RF bucket height

 $\varepsilon_L = \Delta t \Delta E \propto \Delta t \left(\Delta p / p \right)$

$$B_h \propto \frac{T_{rev}/2}{\Delta t_f} r \Delta t_i \left(= \frac{T_{rev}/2}{\Delta t_f} \Delta p_i \right)$$
 where $r = \frac{\Delta p}{\Delta t_f}$

 Small initial momentum spread reduces the required RF bucket height.

- **Pre-bunching** (reduce dt_i and increase r) should be avoided
- Capture in the RF bucket (and acceleration) should be avoided
- Beam stacking should be avoided

because all increase the required RF bucket height.

• If we want to accelerate the beam in AR, "phase displacement" acceleration may be the only option?

- How long does it take?
- Effects of scattering?

"Phase displacement"

$2\pi\delta u = \text{bucket area}$

20

Science and Technology Facilities Council Theory of cyclic accelerators A.A. Kolomensky and A. N. Lebedev

Fig. 81. Illustration of the phase displacement mechanism. 1, region occupied by the bucket; 2, region occupied by the beam; δu , mean displacement along co-ordinate u caused by the motion of the bucket.

Required RF voltage

 $\varepsilon_L = \Delta t \Delta E \propto \Delta t \left(\Delta p / p \right)$

$$B_h \propto \frac{T_{rev}/2}{\Delta t_f} r \Delta t_i \left(= \frac{T_{rev}/2}{\Delta t_f} \Delta p_i \right)$$
 where $r = \frac{\Delta p}{\Delta t_f}$

- Shorter bucket reduces the required RF bucket height proportional.
- In terms of harmonic number h,

$$B_h \propto \frac{\Delta p_i}{h\Delta t_f}$$

• RF bucket height is proportional to V and h

$$B_h \propto \sqrt{\frac{V}{h}}$$
 therefore $V \propto \frac{1}{h}$ is necessary for different h .

• The best way is to increase h as large as possible if we can keep the initial momentum spread the same.

Option 1: Use high harmonic number with shortly chopped linac pulse

- We know a small bunching factor will be suffered from transverse space charge effects.
- However, the bunching factor is still larger than that right after the phase rotation.

• When V \sim 1/h, synchrotron tune is constant. No gain (or lost) of the rotation speed.

New requirements to the injector linac

- Chopper is different from the original design. Large chopping factor.
- Pulse length should be longer unless the peak current can be higher.
- ~ 1ns and no phase rotation is necessary.

• "fast-slow" chopper developed at RAL should extract small fraction without partial chopping.

• The extreme scheme is to inject only one linac bunch of "325 or 350 MHz" per turn. It is short,

Option 2: Injection only 1/4 of the ring by splitting the injection line

- Instead of splitting a bunch train at extraction, split the linac bunch train before injection.
- This is non-Liouvillian process. No increase of phase space unlike splitting at extraction.

Transverse space charge effects

Extreme case, namely all the protons form one short bunch of 2 ns.

$$\sigma_t = 2 \text{ ns}$$
 $T_{rev} = 1 \ \mu \text{s}$

Space charge tune shift of Gaussian beam profile.

$$\epsilon = \frac{r_p n_t}{4\pi \Delta Q \beta^2 \gamma^3 B_f}$$

Bunching factor when longitudinal shape is Gaussian.

$$B_f = \frac{\sqrt{2\pi}\sigma_t}{T_{rev}}$$

Science and Technology **Facilities** Council

Coherent limit (because of high energy)?

Table shows when we assume $\Delta Q = 1$

			5 GeV	10 GeV		
beta		0.9874		0.9963		
	gamma		6.3289	11.6579		
	beta^2 gamma^3	gamma^3 247.18		1572.72		
	geo rms emittance	49.22	28 pi mm mrad	3.8724 pi mm		
	nor rms emittance	307.9	94 pi mm mrad	40.977 pi mm		
	c.f. $\beta = 25 \text{ m}$					
	$\sqrt{\beta \varepsilon_{rms}^*} = 35 \text{ mm}$					

Another way of creating a short bunch

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

X O @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Can we use linac micro bunches directly?

• 324 or 350 MHz linac frequency means bunch width is < 1 ns.

26

Multiturn injection into AR

- Make eta=0 (isochronous) at AR.
- Paint phase space transversely.

Total longitudinal emittance is

eL = N * dt * (dp/p) = ~300 * 0.5 ns * 0.001 = 0.15 ns

Inject linac bunches on top of the previously injected bunches to keep the linac RF structure.

Assume that each linac micro bunch as 100% size of $dt = \pm 0.5$ ns and $dp/p = \pm 0.001$

Apply saw tooth RF in AR

- Introduce energy difference depending on the longitudinal position in the ring.
- Bunch should not move in phase because eta=0.

If we want to make the final $dt_f = +/-5$ ns $dp/p = eL/df_f = 0.15/5 = +/-0.03$ (3%)

 $dE/E = beta^2 dp/p$ dE ~ dp/p E = +/-0.03 5938 MeV = +/-178 MeV

It takes 178 turns to make the energy difference with 1 MV RF cavity (could be faster by more Volts).

Either change eta in AR or extract all bunch to CR with eta!=0

• Let bunches start moving depends on the momentum. No RF.

- eta can be 0.025 from the lattice design.
- dTrev/Trev = eta dp/p
- After N terns, N (dTrev/Trev) = N eta dp/p

Wait until the bunches line up

Science and Technology Facilities Council

30

• The final width depends on the momentum spread which the saw tooth RF created initially.

Bunches is aligned at straight line when N dTrev = Trev/2 Therefore, N = (1/2) / (eta dp/p) = (1/2) / (0.025 0.03)= 667 turns

The number can be optimised by different parameters.

Summary

• Designed a FMC lattice

- eta can be flexible between $0 \sim 0.025$.
- Can be a single ring with pulsed quadrupole?
- Phase rotation fundamentals
 - Longitudinal emittance is preserved.
 - Keep small initial longitudinal emittance is essential.
- Another way to creating a short bunch
 - Can the linac micro bunch structure be preserved?
 - Maybe!

• AR and CR can be the physically identical lattice, but different quadrupole setting.

Thank you for your attention.

Science and Technology Facilities Council KK

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

X O @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Longitudinal space charge effects

• Only depends on the local gradient.

$$\Delta U = e\beta cR \frac{\partial\lambda}{\partial s} \frac{g_0 Z_0}{2\beta\gamma^2}$$

Compressor Tentative Parameters

Option 2

 2.5×10^{14}

Table 11.2	: Tentative	Parameters	Compressor.
------------	-------------	------------	-------------

Parameters	Symbol	Unit	Option 1	Option 2
Energy	E_R	GeV	5	10
Circumference	С	m	between 3	300 to 900
Protons on target	\mathbf{n}_p	-	5×10^{14}	2.5×10^{12}
Final rms bunch length	σ_z	ns		2
Geo. rms. emittance	$\varepsilon_{x,y}$	$\pi \text{ mm mrad}$	>	- 5
Max. turn for full rotation	N_{rot}	-	5	50

The max number of turns before extraction (turn to rotate the bunch) will drive:

- Ring optics (phase slip factor) 1.
- RF Amplitude and phase (for rotation) 2.
- Ring dispersion control (because of the increasing 3. energy spread of the bunch)
- 4. Amount of tune spread that can be handled

Lower energy : Target and existing design Higher energy: MAPS study

Green field solution, i.e. we will Not try to fit the ring in any available tunnel

Laslett tune shift (free space)

