

The BESSY III Lattice

A highly competitive non-standard lattice for a 4th gen. Light Source with Metrology and Timing Capabilities

P. Goslawski for the CDR, accelerator & lattice design team

(M. Arlandoo, **M. Abo-Bakr, B. Kuske, J. Bengtsson, J. Völker**, V. Dürr, A. Jankowiak et al.,) (K. Holldack, Z. Hüsges, K. Kiefer, A. Meseck, R. Müller, M. Sauerborn, O. Schwarzkopf, J. Viefhaus et al.,)

Pre-CDR DOI: 10.5442/r0004 HZB Combined function BESSY III Homogenous bend

Two partners & two synchrotron radiation sources

ernsehturm am Alexanderplatz

BESSY II

1.7 GeV, DBA, 5 nm rad, 300 mA 240 m, 16 Straights, 5 m since 1998

Soft and tender X-rays Spectro-Microscopy Timing: low α , femto-slicing SB, VSR, TRIBs/2-Orbits

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

MLS Metrology Light Source 630 MeV, DBA 100 nm rad, 200 mA 48 m, 4 Straights since 2007

THz / IR to VUV, EUV Optimised for low α , SSMB studies

ZEISS

Talk by D. Xiujie on Wednesday Low Long. Emittance and SSMB Storage Rings

Solar Energy	Chemical Energy	Quantum & Functional Materials
Photon Science	Accelerators	Scientific Instrumentation & Support

Thanks to a huge team effort at.. FOM-Riinhuizen TNO TPD PTB-BESSY IWS Dresder Philips **ASML** Heidenhair . The teams at ASML and Zeiss · ... and many others art of this work was supported by Bildung und Forschung Projekt "Grundlag 13N8088 and 13N8837, MEDEA Projects XTATIC" and EAGLE" and European Corr HZB :: BESSY II Light Source

BESSY III Objectives & Requirements

P. Goslawski, iFAST - 9th Low Emittance Rings workshop, February 2024, CERN, Geneva, Switzerland

Facility parameters

- 1. 1st undulator harmonics polarized up to 1 keV from conventional APPLE-II
- 2. Diffraction limited till 1 keV
 - Stay in Berlin-Adlershof
 - Nanometer spatial res. & phase space matching
 - PTB/BAM metrology applications

Already at BESSY II, a 3rd generation **without** combined function bends

Ring parameters

- 1. Ring Energy **2.5 GeV** (1.7 GeV)
- 2. Emittance

100 pm rad (5 nm rad)

- 3. Circumference **350 m 16 straights @ 5.6 m** (240 m @ 4.5 m)
- 4. Low beta straights & maybe round beams
- 5. Metrology source Homogenous bends

1-2 bends per arc

Measuring the field at the source point with a NMR probe in a volume of 10x10x10 mm

6. Momentum > 1.0e-4 compaction factor

PTB - Metrology Sources, Homogenous Bends

(Physikalisch Technische Bundesanstalt)

HZB ::: BESSY II Light Source

An absolute measurement of the radiation power with highest accuracy

- Schwinger equation with its parameters
 - Electron Energy W with rel. unc. < 5e-4
 - Electron Current I with rel. unc. < 2e-4
 - Magnetic Field B with rel. unc. < 1e-4
 - Source size & div. with rel. unc. < 20 %
 - Distance to apert. with rel. unc. ~ 2 mm

Lattice Design - 4th Generation Lightsource Lattices

The Higher Order Achromat, HOA-MBA

- Distributed sextupoles
- MAX IV, SLS 2.0 ... up to 3 GeV
 - J. Bengtsson, A. Streun, S. Leeman, et al.

The Hybrid, HMBA

- Localised sextupoles
- ESRF-EBS, PETRA IV, ALS-U , ... above 3 GeV

• P. Raimondi, ...

LEGO Approach - Basic building blocks of one sector

UC - Unit Cell DSC - Dispersion Suppress.. MC - Matching Cell

A 6-MBA has 5-MBA-UC 4 pure UC and 1 (2 x ½) broken UC → DSC

16 straights & sectors:

360° / 16 = 22.5° per sector 4*4.5° main UC bend & 2*2.25° DSC bend

LEGO Approach - Basic building blocks of one sector

References:

Linear Optics Design:

B.C. Kuske, "Towards Deterministic Design of MBA-Lattices", IPAC21, MOPAB220
B.C. Kuske et al., "Basic Design Choices for the BESSY III MBA Lattice", IPAC22, MOPOTK009
B.C. Kuske et al., "Further aspects of the deterministic lattice design app. for BESSY III", IPAC23, WEPL039
P. Goslawski et al., "Update on the lattice design process of BESSY III: towards a baseline lattice", IPAC23, WEPL036

Robust Design & TRIBs:

J. Bengtsson et al., "Robust Design and Control of the Nonlinear Dyn. for BESSY-III", IPAC21, MOPAB048 M. Arlandoo et al., "A First attempt at implem. TRIBs in BESSY III's Design Lattice", IPAC21, THPOPT003 J. Bengtsson et al., "Robust design of modern Chasman-Green lattices - a geometric control theory approach", IPAC2023, WEPL037 M. Arlandoo et al., "Further investigations of TRIBs in BESSY III design MBA lattices

Overview:

P. Goslawski et al., "BESSY III & MLS II - Status of ..", IPAC21, MOPAB126

 P. Goslawski et al., "BESSY III Status Report and Lattice Design Process", IPAC22, TIPOMS010
 P. Goslawski et al., "BESSY III - status and overview", IPAC23, MOPA174

The process towards a BESSY III lattice

A deterministic lattice approach

- Stepwise: Power and Function of each Component &"Knob" → **LEGO approach**
- Limiting the hardware (conservative ansatz) Sustainability - permanent magnets
 - Bore diameter of 25 mm Ο Diameter inner/outer vac. pipe of 18/21 mm
 - Bends up to 1.4 T Ο
 - Combined fct. Bend 0.8 T & 15 T/m or 30 T/m Ο
 - Quads up to 60 80 T/m (depends on RB) Ο
 - Sextupoles up to 4000 T/m² Ο
 - Spacing between magnets 100 mm Ο
- HigherOrderAchromat Approach:
 - 6MBA + homogenous metrology bend Ο

Two lattice candidates

- Different hardware solutions:
 - cf-lattice: combined function bend \cap In center of 6MBA (community standard) sf - **cf - cf - cf - cf** - sf cf - **cf - cf - cf - cf** - cf

Talk by B. Kuske, Tuesday

Deterministic approach to MBA lattice design

Sustainability at BESSY III

Talk by J. Völker on Thursday,

- sf-lattice: separated (homogenous) 0 Bend in the center of 6MBA (metrology): cf - sf - sf - sf - cf sf - sf - sf - sf - sf
- PTB needs a metrology bend, one would be enough

LEGO approach - the "one and only" (deterministic) MBA-Unit Cell (UC) for

- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance Magnet arrangement

P. Goslawski, iFAST - 9th Low Emittance Rings workshop, February 2024, CERN, Geneva, Switzerland

LEGO approach - Unit Cell - Impact of Reverse Bend

- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

Magnet arrangement Cf sf CF-UC with 1m long main bends SF-UC with 1m long main bends Jx = 1.7 Jx = 1.0 500 500 Emittance in pmrad 🔺 mom. comp. factor 1.0e-4 Emittance in pmrad 🔺 mom. com. factor 1.0e-4 compaction factor [1.0e-4] compaction factor [1.0e-4] 400 400 Emittance in pmrad Emittance in pmrad 300 300 200 momentum momentum 100 0 100 0 Jx = 2.3Jx = 2.5 -0.2 -0.8 -0.6 -0.4 0.0 -0.8 -0.6 -0.4 -0.2 0.0 $C_q \gamma^2 I5$ Reverse bend angle in ° Reverse bend angle in ° $\epsilon_0 =$ P. Goslawski, iFAST - 9th Low Emittance Rings workshop, February 2024, CERN, Geneva, Sw 10 Light Source

and for the hardware specifications of our project

Impact of reverse bend on alpha & emittance

LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC?
- Magnet positioning/arrangement in that way, to reduce the sextupole strength for the chromatic correction → as less as possible non-linear power

$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

• The cf MBA-UC:

0

SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	SUM(b3 * L) ² for Chrom = 0 SF, SD [1/m ²]
SX, RB, SY, B	2.446 m	2.5e-4	95 pm rad	-0.38 ° (k = 6.7) L = 0.163*2	-0.701, -0.355	2324.77 21.02, -26.84
RB, SX, SY, B	2.490 m	2.7e-4	95 pm rad	-0.26° (k = 6.8) L = 0.125 *2	-0.802, -0.278	<mark>3905.21</mark> 27.96, -34.22

LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC?
- Magnet positioning/arrangement in • that way, to reduce the sextupole strength for the chromatic correction \rightarrow as less as possible non-linear power

$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

The sf MBA-UC:

	SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	SUM(b3 * L) ² for Chrom = 0 SF, SD [1/m ²]
	SX, RB, <mark>QD, SY</mark> , B	2.670 m	2.0e-4	100 pm rad	-0.23 ° (k = 8.6) L = 0.175*2	-0.751, -0.277	<mark>901.43</mark> 10.56, -18.42
	SX, RB, <mark>SY, QD</mark> , B	2.610 m	2.1e-4	98 pm rad	-0.23° (k = 8.5) L = 0.14 * 2	-0.740, -0.295	1500.19 17.60, -20.98
Goslaw	RB, SX, QD, SY, B	2.700 m Rings workshop	2.0e-4 9, February 2024	98 pm rad I, CERN, Geneva, Swit	-0.19° (k = 8.4) _{zeHand} 0.13 * 2	-0.835, -0.232	2781.58 19.39, -31.86 12

LEGO approach - Unit Cell -

- The two different MBA-UCs: **cf & sf**
- UC (4.5°): Q_xy = (0.4, 0.1), Chrom_xy = (0.0, 0.0)

$$\xi = \frac{\Delta Q}{\Delta p/p} \sim \oint -k_1(s)\beta(s)ds$$
$$\xi_{tot} \sim \oint [k_2(s) \ D(s) - k_1(s)] \ \beta(s) \ ds$$

and for the hardware specifications of our project

Non-Linear Beam Dynamics - TSWM, Chromatic Tune Shift

P. Goslawski, iFAST - 9th Low Emittance Rings workshop, February 2024, CERN, Geneva, Switzerland

14 **HZB** :: BESSY II Light Source

Non-Linear Beam Dynamics - TSWM, Chromatic Tune Shift

15

P. Goslawski, iFAST - 9th Low Emittance Rings workshop, February 2024, CERN, Geneva, Switzerland

Non-Linear Beam Dynamics - Sextupole Split Up

Non-linear optimization

- Defining target parameters for non-linear optimization and "knobs"
- **Target parameters:** (benchmark MAX IV, SLS2):
 - Tune Shift With Momentum **TSWM**: \cap ΔQx , $\Delta Qy \sim 0.1$ at $\Delta p = +-3\%$ (+-5%)
 - Tune Shift with Amplitude TSWA: 0 ΔQx , $\Delta Qy \sim 0.1$ limits acceptance ~ 3 mm

Knobs:

- Chromatic Octupoles for 2nd order chromaticity Ο
- Split up of chromatic sextupoles (TSWM + TSWA) 0
- **Findings**, **Results**:
 - The two lattice candidates show an 0 opposite behavior in order to reduce TSWM
 - SF3 with biggest impact at sf lattice
 - SF1 with biggest impact at cf lattice

In progress

with S.A. Garcia

from KIT and AI

Non-Linear Beam Dynamics - Sextupole Split Up

Non-linear optimization

Limiting the momentum acceptance in the longitudinal plane

cfcf, sfsf4Q •

Thanks to A. Streun

18

BucketView

Ord. Voltage [MV] MCP [1e-4] 1.09 5.53

In progress

- 0

Mismatch in momentum acceptance between longitudinal and transverse plane

Lattice variants	Mom.Acc. transverse plane $\delta_{acc, x,y}$ Chromatic Tune Shift TSWM, $Q_{x,y} = Q_{x,y} (\delta)$	Mom.Acc. longit. plane $\delta_{\rm acc, \ rf}$ rf Acceptance	Alpha buckets Ratio between α_0/α_1
cfcf	2% → 3%	8%	1.1 / 5.5
sfsf4Q	4% ightarrow 5%	~ 4%	1.0 / 12.1

D. Robin, E. Forest et al., "Quasi-isochronous storage rings", Phys. Rev. E **48**, 2149, (1993)

 $x = x_{\beta} + D \ \delta + D_1 \ \delta^2$

- The often forgotten longitudinal plane ...
 - Three oscillators in x, y, delta with three natural chromaticities, but only two sextupolesfamilies for correction
 - α_1 , is the 2nd order path lengthening is the longitudinal chromaticity

$$\alpha_0 = \frac{1}{L_0} \oint \frac{D}{\rho} ds \qquad \alpha_1 = \frac{1}{L_0} \oint \frac{D'^2}{2} + \frac{D_1}{\rho} ds$$

 $\Delta L/L_0 = \alpha(\delta) \ \delta = \alpha_0 \ \delta + \alpha_1 \ \delta^2 + \dots$

• Ratio of α_0/α_1 defines the alpha bucket (unstable off-momentum fix point), and starts to limit the rf momentum acceptance

Natural Chromaticity in long. plane & Knobs for Correction (or Attack)

- Ratio of α_0/α_1 limits the rf momentum acceptance
- Increase α_0 , reduce RB &/or lengthen main bend
- Reduce α_1 , figure out what is the biggest contribution

In progress Michael Arlandoo

 $\alpha_0 = \frac{1}{L_0} \oint \frac{D}{\rho} \, ds \qquad \alpha_1 = \frac{1}{L_0} \oint \frac{D'^2}{2} + \frac{D_1}{\rho} \, ds$

Natural Chromaticity in long. plane & Knobs for Correction (or Attack)

- Ratio of α_0/α_1 limits the rf momentum acceptance
- Increase α_0 , reduce RB &/or lengthen main bend
- Reduce α_1 , figure out what is the biggest contribution

$$\alpha_0 = \frac{1}{L_0} \oint \frac{D}{\rho} ds \qquad \alpha_1 = \frac{1}{L_0} \oint \frac{D'^2}{2} + \frac{D_1}{\rho} ds$$

In progress Michael Arlandoo

The sf-UC with the additional vertical focussing quadrupole with very good separation of beta_xy functions at the chromatic sextupoles which guarantees for good TSWM,

generates small mom. Acc. in the longitudinal plane

Natural Chromaticity in long. plane & Knobs for Correction (or Attack)

In progress Michael Arlandoo

SFP

LIE

 $\alpha_0 = \frac{1}{L_0} \oint \frac{D}{\rho} \, ds \qquad \alpha_1 = \frac{1}{L_0} \oint \frac{D'^2}{2} + \frac{D_1}{\rho} \, ds$

- Ratio of α_0/α_1 limits the rf momentum acceptance
- Increase α_0 , reduce RB &/or lengthen main bend
- Reduce a_1 , figure out what is the biggest contribution

The process towards a BESSY III lattice

Robustness Analysis & Simulated Commissioning

- J. Bengtsson with tracy or thor_scsi
 - Robustness analysis against misalignments and magnet field uncertainties (errors), HOA, Phase Advance, Periodicity
 - Conclusion: Two stable and robust solutions cfcf, sfsf4Q with ~ 3%, 5% momentum acceptance
- T. Hellert with AT and Simulated Commissioning
 - BBA, Correct Orbit, LOCO

23

The process towards a BESSY III lattice - Summary

LEGO approach - the UC

- Two robust solutions: cfcf, sfsf4Q
 - cfcf: less magnets, little bit shorter, but mom.acc_xy only ~2-3%
 - sfsf4Q: more magnets, strongly reduced sextupole strength for chromaticity correction, mom.acc_xy ~4-5%
 - Matching with longitudinal plane!
- Currently ongoing / Next steps:
 - Non-linear optimisation scheme
 - Robustness & Tolerance analysis
 - Injection scheme & Collective effects
 - Intensify discussions with construction & engineering department

Thank you for your attention !

Backup Slides

Overview - BESSY II+ / III

Towards BESSY III by using BESSY II, BESSY II+

BESSY II+ paves the way to BESSY III

BESSY						Operation														
2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036							
												Be	amline Tr	ansfer ,						
CDR TDR					Project/Construction Com.							Operati	ion							
2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036							
2	2 2023 CDR 2 2023	2 2023 2024 CDR 2 2023 2024	2 2023 2024 2025 CDR 2 2023 2024 2025	CDR TI 2 2023 2024 2025 2026 CDR TI 2 2023 2024 2025 2026	CDR TDR 2 2023 2024 2025 2026 2027	CDR TDR 2 2023 2024 2025 2026 2027 2028 CDR TDR 2 2023 2024 2025 2026 2027 2028	CDR TDR 2 2023 2024 2025 2026 2027 2028 2029 CDR TDR CDR CDR <th>CDR TDR Project 2 2023 2024 2025 2026 2027 2028 2029 2030 CDR TDR Project Project Project 2 2023 2024 2025 2026 2027 2028 2029 2030</th> <th>CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031</th> <th>CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032</th> <th>Z 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033</th> <th>CDR TDR Project/Construction Construction Construct</th> <th>2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 CDR TDR Project/Construction Com. 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035</th> <th>2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 CDR TDR Project/Construction Com. Operation 2 2023 2024 2025 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2023 2024 2025 2026 2027 2028 2030 2031 2032 2033 2034 2035 2036 2024 2025 2026 2027 2028 2030 2031 2032 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"<="" colspan="6" th=""></th></th>	CDR TDR Project 2 2023 2024 2025 2026 2027 2028 2029 2030 CDR TDR Project Project Project 2 2023 2024 2025 2026 2027 2028 2029 2030	CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031	CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032	Z 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 CDR TDR Project/Construction 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	CDR TDR Project/Construction Construction Construct	2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 CDR TDR Project/Construction Com. 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035	2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 CDR TDR Project/Construction Com. Operation 2 2023 2024 2025 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2023 2024 2025 2026 2027 2028 2030 2031 2032 2033 2034 2035 2036 2024 2025 2026 2027 2028 2030 2031 2032 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"<="" colspan="6" th=""></th>						

BESSY II+ application/project: operando capabilities, modernization, and sustainability.

100 M€ (25 % HZB, 25% strategic partners or third-party projects, 50 % request funding bodies) split up in 50 % for 8 new beamlines, endstations & sample environment, 15 % for improving the sustainability of BESSY II, 35 % modernization of the accelerator complex BESSY III Hardware / Tech.

Future BESSY III Science Case

Active Higher-Harmonic Cavities together with ALBA & DESY – first beam test in BESSY II now !

Hybrid-Permanent Magnets – replace power hungry (30 kW) bending electromagnet in BESSY II transferline – metrology suitable PM dipole

HZB :: BESSY II Light Source

BESSY II Specialties

BESSY II

1.7 GeV, DBA, 5 nm rad, 300 mA 240 m, 16 Straights, 5 m since 1998

Solar Energy

Photon Science

Soft and tender X-rays Spectro-Microscopy Timing: low α, femto-slicing SB, VSR, TRIBs/2-Orbits

Arlandoo, Michael

P. Goslawski, iFAST - 9th Low Emittance Rings workshop, February 2024, CERN, Geneva, Switzerland

Light Source

BESSY III

100x times more brightness than BESSY II & 1000x times smaller focus at sample (10μm down to 10nm)

In situ & operando, sample environment, material & metrology labs

→ Integrated Research Campus

 $B(\lambda) =$

Higher Order Achromat

. . .

Periodicity of Sextupoles and Phase Advance between Sextupoles

• Geometric resonance driving terms cancel if the phase advance between sextupole cells is chosen wisely.

					First Order						Secon	d Order				Third Ord	ler	
Call	v	v		v	Geor 3v	v 2v	v +2v	2v	mauc 2v	div	4v	2v -2v	2v +2v	54	v .4v	v +4v	34 -24	3v +2v
1	0.400	0.100	2/5.0.5/5	0.40	1.20	0.20	0.60	0.80	0.20	1.60	0.40	0.60	1.00	2.00	0.00	0.80	1.00	1.40
2	0.800	0.200	20,000	0.80	2.40	0.40	1.00	1.60	0.40	3.20	0.80	1.20	2.00	4.00	0.00	1.60	2.00	2.80
3	1.200	0.300		1.20	3.60	0.60	1.80	2.40	0.60	4.80	1.20	1.80	3.00	6.00	0.00	2.40	3.00	4.20
4	1.600	0.400		1.60	4.80	0.80	2.40	3.20	0.80	6.40	1.60	2.40	4.00	8.00	0.00	3.20	4.00	5.60
5	2.000	0.500		2.00	6.00	1.00	3.00	4.00	1.00	8.00	2.00	3.00	5.00	10.00	0.00	4.00	5.00	7.00
Call	~	N			Geor	netric	v +7v	Chro	matic	Av	Geo	metric	24 +24	Ev	ar -dar	Geometri	ic 24 - 24	24 + 24
Cell	ν,	v _y	2/7 1/7	ν _x	Geor 3v _x	v _x -2v _y	v _x +2v _y	Chron 2v _x	2vy	4v _x	Geo 4v _y	metric 2v _x -2v _y	2v _x +2v _y	5v _x	v _x -4v _y	Geometri v _x +4v _y	c 3ν _x -2ν _y	3v _x +2v _y
Cell 1	V _x 0.429	v _y 0.143	3/7, 1/7	v _x 0.43	Geor 3v, 1.29	netric v _x -2v _y 0.14	v _x +2v _y 0.71	Chron 2v _x 0.86	matic 2vy 0.29	4v _x 1.71	Geo 4v _y 0.57	metric 2vx-2vy 0.57	2v _x +2v _y 1.14	5v _x 2.14	v _x -4v _y -0.14	Geometri v _x +4v _y 1.00	ic 3ν _x -2ν _y 1.00	3v _x +2v _y 1.57
Cell 1 2	v _x 0.429 0.857	v _y 0.143 0.286	3/7, 1/7	v _x 0.43 0.86	Geor 3v _x 1.29 2.57	netric v _x -2v _y 0.14 0.29	v _x +2v _y 0.71 1.43	Chron 2v _x 0.86 1.71	matic 2vy 0.29 0.57	4v _x 1.71 3.43	Geo 4v _y 0.57 1.14	metric 2v _x -2v _y 0.57 1.14	2v _x +2v _y 1.14 2.29	5v _x 2.14 4.29	v _x -4v _y -0.14 -0.29	Geometri v _x +4v _y 1.00 2.00	ic 3v _x -2v _y 1.00 2.00	3v _x +2v _y 1.57 3.14
Cell 1 2 3	v _x 0.429 0.857 1.286	v _y 0.143 0.286 0.429	3/7, 1/7	v _x 0.43 0.86 1.29	Geor 3v _x 1.29 2.57 3.86	v _x -2v _y 0.14 0.29 0.43	v _x +2v _y 0.71 1.43 2.14	Chron 2v _x 0.86 1.71 2.57	2v _y 0.29 0.57 0.86	4v _x 1.71 3.43 5.14	Geo 4v _y 0.57 1.14 1.71	metric 2v _x -2v _y 0.57 1.14 1.71	2v _x +2v _y 1.14 2.29 3.43	5v _x 2.14 4.29 6.43	v _x -4v _y -0.14 -0.29 -0.43	Geometri v _x +4v _y 1.00 2.00 3.00	ic 3v _x -2v _y 1.00 2.00 3.00	3v _x +2v _y 1.57 3.14 4.71
Cell 1 2 3 4	v _x 0.429 0.857 1.286 1.714	v _y 0.143 0.286 0.429 0.571	3/7, 1/7	v _x 0.43 0.86 1.29 1.71	Geor 3v _x 1.29 2.57 3.86 5.14	etric v _x -2v _y 0.14 0.29 0.43 0.57	v _x +2v _y 0.71 1.43 2.14 2.86	Chron 2v _x 0.86 1.71 2.57 3.43	2v _y 0.29 0.57 0.86 1.14	4v _x 1.71 3.43 5.14 6.86	Geo 4v _y 0.57 1.14 1.71 2.29	metric 2v _x -2v _y 0.57 1.14 1.71 2.29	2v _x +2v _y 1.14 2.29 3.43 4.57	5v _x 2.14 4.29 6.43 8.57	v _x -4v _y -0.14 -0.29 -0.43 -0.57	Geometri v _x +4v _y 1.00 2.00 3.00 4.00	ic 3v _x -2v _y 1.00 2.00 3.00 4.00	3v _x +2v _y 1.57 3.14 4.71 6.29
Cell 1 2 3 4 5	v _x 0.429 0.857 1.286 1.714 2.143	v _y 0.143 0.286 0.429 0.571 0.714	3/7, 1/7	v _x 0.43 0.86 1.29 1.71 2.14	Geor 3v _x 1.29 2.57 3.86 5.14 6.43	0.14 0.29 0.43 0.57 0.71	v _x +2v _y 0.71 1.43 2.14 2.86 3.57	Chron 2v _x 0.86 1.71 2.57 3.43 4.29	matic 2v _y 0.29 0.57 0.86 1.14 1.43	4v _x 1.71 3.43 5.14 6.86 8.57	Geo 4v _y 0.57 1.14 1.71 2.29 2.86	metric 2v _x -2v _y 0.57 1.14 1.71 2.29 2.86	2v _x +2v _y 1.14 2.29 3.43 4.57 5.71	5v _x 2.14 4.29 6.43 8.57 10.71	v _x -4v _y -0.14 -0.29 -0.43 -0.57 -0.71	Geometri v _x +4v _y 1.00 2.00 3.00 4.00 5.00	c 3v _x -2v _y 1.00 2.00 3.00 4.00 5.00	3v _x +2v _y 1.57 3.14 4.71 6.29 7.86
Cell 1 2 3 4 5 6	Yx 0.429 0.857 1.286 1.714 2.143 2.571	v _y 0.143 0.286 0.429 0.571 0.714 0.857	3/7, 1/7	v _x 0.43 0.86 1.29 1.71 2.14 2.57	Geor 3vx 1.29 2.57 3.86 5.14 6.43 7.71	netric v _x -2v _y 0.14 0.29 0.43 0.57 0.71 0.86	v _x +2v _y 0.71 1.43 2.14 2.86 3.57 4.29	Chron 2v _x 0.86 1.71 2.57 3.43 4.29 5.14	matic 2vy 0.29 0.57 0.86 1.14 1.43 1.71	4ν _x 1.71 3.43 5.14 6.86 8.57 10.29	Geo 4v _y 0.57 1.14 1.71 2.29 2.86 3.43	metric 2vx-2vy 0.57 1.14 1.71 2.29 2.86 3.43	2v _x +2v _y 1.14 2.29 3.43 4.57 5.71 6.86	5v _x 2.14 4.29 6.43 8.57 10.71 12.86	v _x -4v _y -0.14 -0.29 -0.43 -0.57 -0.71 -0.86	Geometric vx+4vy 1.00 2.00 3.00 4.00 5.00 6.00	c 3v _x -2v _y 1.00 2.00 3.00 4.00 5.00 6.00	3v _x +2v _y 1.57 3.14 4.71 6.29 7.86 9.43

The process towards a BESSY III lattice - Non-Linear Beam Dynamics

TSWA Amplitude Dependent Tune Shift

BESSY III

Beamline Requests & Portfolio

#	Name	Photon Energy	Main Methods	Main Applications
1	VUV to Hard	5 eV - 20 keV	XPS, HAXPES, NEXAFS, STXM	Catalysis, Energy (Storage, Batteries, Solar
1	DIR	20 eV/ 1 5 keV/	APS, HAAPES, NEAAFS, STAIN	Fuels)
	DIF	20 eV - 1.5 KeV	DES HAVES TYM VAS VECS	Energy, Catalysis
2	Soft & Tender	100 eV - 4 keV	PES, HAAPES, TAIVI, AAS, APCS	Energy (Batteries), Quantum
1	DIP	2 - 14 keV	Diffraction / EXAES/XRE_NEXAES	Energy, Quantum Catalysis
	51	2 14 KCV	BEIChem XPS	Catalysis Chemistry
3	XUV to Soft	60 eV - 1.5 keV	BEIChem XPS	Catalysis, Chemistry
	DIP	2 - 14 keV	XRD/ EXAFS, WAXS, SAXS, HAXPES	Energy, Catalysis
			Lensless Imaging, X-ray holography, XPCS	Quantum, Energy
4	Magnetic Imaging	150 eV - 2 keV	STXM, Resonant Scattering, 3D mag. tomogr.	Quantum, Energy
	DIP	100 eV - 1.5 keV	XMCD, XAS with magnetic vector fields	Quantum, Energy
	1411/C	5 000 1/	ARPES	Quantum , Energy, Catalysis
5	XUV Spectroscopy	5 - 200 eV	nano-ARPES	Quantum, Energy Catalysis
	DIP	80 eV - 4 keV	NEXAFS, XPS	Catalysis, Energy, Quantum
	Cath C. Tau day loss size	100 -1/ 01-1/	TXM, FIB-TXM	Life Sciences, Energy
6	Soft & Tender Imaging	180 ev - 8 kev	Tender TXM, Tomography	Life Sciences, Energy
2	DIP	20 eV 1.5 keV	Soft X-ray spectroscopy	Catalysis, Energy, Quantum
	Inclustic Scattoring	180 oV 2 koV	RIXS	Quantum, Energy Catalysis
7	melastic Scattering	190 64 - 2 464	meV@1keV RIXS	Quantum, Energy, Catalysis
	DIP	20 eV - 1.5 keV	Soft X-ray Dynamics	open port
	Spectro Microscopy	100 eV - 1.8 keV	(S)PEEM, PEEM, Ptychography	Quantum, Energy, Catalysis
8	Specifo Microscopy	100 00 1.0 800	nano-ARPES	Quantum, Energy, Catalysis
	DIP	100 eV - 4 keV	Broad band soft + tender X-ray spectroscopy	open port
	Macromol Crystallography	5 - 20 keV	X-ray Diffraction	Life Sciences
9			X-ray Diffraction	Life Sciences
	DIP	80 eV - 2 keV	Soft X-ray spectroscopy	open port
	Multimodal Spectroscopy	20 eV- 8 keV	Multimodal Spectroscopy	open port
10			Time-resolved spectroscopy	open port
	DIP	20 eV - 3 keV	Declined beamline, Multimodal spectroscopy	Catalysis
	PTB: PGM/EUV	60 eV - 1.85 keV	Reflectometry / Scatterometry	Metrology for Industry
11			Reflectometry / Scatterometry	Metrology for Industry
	DIP PTB: FCM	1.7 keV - 11 keV	X-ray radiometry / X-ray reflectometry	Metrology
	PTB: PGM/RFA	80 eV - 2 keV	X-ray spectometry	Materials Metrology
12			X-ray spectometry	Materials Metrology
	DIP PIB: white light	40 ev - 20 keV	Primary source standard BESSY III	IVIETROIOgy
12	PTB: Tender X-ray	1 keV - 10 keV	µ-XRF/ (GI)SAXS / Ptychography	Materials Metrology, Energy
13		1 ke)/ 2 ke)/	µ-XRF/ (GI)SAXS / Ptychography	in line Metrology, chergy
-	DIP PIB: APBF/ESA	1 KeV - 5 KeV	Diffraction VPE UCT	Materials Metrology for Manufacturing
14	BAMline	5 keV - 120 keV	Diffraction, XRF, µCT	Materials Metrology
			Diffraction, ARF, µCI	iviaterials wetrology

HZB :: BESSY II Light Source

33

1st Milestone Lattice: HOA - Linear Beam Dynamics

LEGO approach - UC -Angle distribution between UC & DSC

Distribution of bending angles

$$\epsilon_0 \sim \phi^3$$

- 16 sectors \rightarrow 360/16 = 22.5°
- With a 6-MBA: ¹/₂ + 4 + ¹/₂
 2.25° + 4.5° + 4.5° + 4.5° + 4.5° + 2.25°
- For our 6-MBA with 16 straights it is a 20-30% reduction
 - $\circ~$ at UC ~ 4.0° and DSC ~ 3.25°

34