The BESSY III Lattice

A highly competitive non-standard lattice for a 4th gen. Light Source with Metrology and Timing Capabilities
P. Goslawski for the CDR, accelerator \& lattice design team
(M. Arlandoo, M. Abo-Bakr, B. Kuske, J. Bengtsson, J. Völker, V. Dürr, A. Jankowiak et al.,)
(K. Holldack, Z. Hüsges, K. Kiefer, A. Meseck, R. Müller, M. Sauerborn, O. Schwarzkopf, J. Viefhaus et al.,)

Two partners \& two synchrotron radiation sources

BESSY III Objectives \& Requirements

Facility parameters

1. $1^{\text {st }}$ undulator harmonics polarized up to 1 keV from conventional APPLE-II
2. Diffraction limited till 1 keV
3. Stay in Berlin-Adlershof
4. Nanometer spatial res. \& phase space matching
5. PTB/BAM metrology applications

Already at BESSY II, a 3rd

 generation without combined function bends
Ring parameters

1. Ring Energy
2.5 GeV
(1.7 GeV)
2. Emittance

100 pm rad (5 nm rad)
3. Circumference 350 m

16 straights @ 5.6 m (240 m @ 4.5 m)
4. Low beta straights \& maybe round beams
5. Metrology source
 Homogenous bends Measuring the field at the source point with a NMR probe in a volume of $10 \times 10 \times 10 \mathrm{~mm}$

6. Momentum $>1.0 \mathrm{e}-4$ compaction factor

PTB - Metrology Sources, Homogenous Bends

ASML
(Physikalisch Technische Bundesanstalt)
EUV Litography system (200-300M€)

An absolute measurement of the radiation power with highest accuracy

- Schwinger equation with its parameters
- Electron Energy W
with rel. unc. < 5e-4
Electron Current with rel. unc. <2e-4
- Magnetic Field B with rel. unc. < 1e-4 with rel. unc. $<20 \%$
- Distance to apert. with rel. unc. $\sim 2 \mathrm{~mm}$

Lattice Design - 4th Generation Lightsource Lattices

The Higher Order Achromat, HOA-MBA

- Distributed sextupoles
- MAX IV, SLS 2.0 ... up to 3 GeV
- J. Bengtsson, A. Streun, S. Leeman, et al.

The Hybrid, HMBA

- Localised sextupoles
- ESRF-EBS, PETRA IV, als.v , ... above 3 GeV
- P. Raimondi, ...

LEGO Approach - Basic building blocks of one sector

UC - Unit Cell
 DSC - Dispersion Suppress..
 MC - Matching Cell

A 6-MBA has 5-MBA-UC 4 pure UC and $1(2 \times 1 / 2)$ broken UC \rightarrow DSC

16 straights \& sectors:
$360^{\circ} / 16=22.5^{\circ}$ per sector $4^{*} 4.5^{\circ}$ main UC bend \& $2^{*} 2.25^{\circ}$ DSC bend

LEGO Approach - Basic building blocks of one sector

References:

Linear Optics Design:

B.C. Kuske, "Towards Deterministic Design of MBA-Lattices", IPAC21, MOPAB220
B.C. Kuske et al., "Basic Design Choices for the BESSY III MBA Lattice", IPAC22, MOPOTK009
B.C. Kuske et al., "Further aspects of the deterministic lattice design app. for BESSY III", IPAC23, WEPL039
P. Goslawski et al., "Update on the lattice design process of BESSY III: towards a baseline lattice", IPAC23, WEPL036

Robust Design \& TRIBs:

J. Bengtsson et al., "Robust Design and Control of the Nonlinear Dyn. for BESSY-III", IPAC21, MOPAB048
M. Arlandoo et al., "A First attempt at implem. TRIBs in BESSY III's Design Lattice", IPAC21, THPOPT003 J. Bengtsson et al., "Robust design of modern Chasman-Green lattices - a geometric control theory approach", IPAC2023, WEPL037
M. Arlandoo et al., "Further investigations of TRIBs in BESSY III design MBA lattices

Overview:

P. Goslawski et al., "BESSY III \& MLS II - Status of ..", IPAC21, MOPAB126
P. Goslawski et al., "BESSY III Status Report and Lattice Design Process", IPAC22, TIPOMS010
P. Goslawski et al., "BESSY III - status and overview", IPAC23, MOPA174

The process towards a BESSY III lattice

A deterministic lattice approach

- Stepwise: Power and Function of each Component \&"Knob" \rightarrow LEGO approach
- Limiting the hardware (conservative ansatz) Sustainability - permanent magnets

\circ	Bore diameter of 25 mm
	Diameter inner/outer vac. pipe of $18 / 21 \mathrm{~mm}$
\circ	Bends up to 1.4 T
\circ	Combined fct. Bend $0.8 \mathrm{~T} \& 15 \mathrm{~T} / \mathrm{m}$ or $30 \mathrm{~T} / \mathrm{m}$
\circ	Quads up to $60-80 \mathrm{~T} / \mathrm{m} \mathrm{(depends} \mathrm{on} \mathrm{RB)}$
\circ	Sextupoles up to $4000 \mathrm{~T} / \mathrm{m}^{2}$
\circ	Spacing between magnets 100 mm

- HigherOrderAchromat Approach:
- 6MBA + homogenous metrology bend

Two lattice candidates

- Different hardware solutions:
- cf-lattice: combined function bend In center of 6MBA (community standard) sf-cf-cf-cf-cf-sf cf-cf-cf-cf-cf-cf
- sf-lattice: separated (homogenous) Bend in the center of 6MBA (metrology): cf-sf-sf-sf-sf-cf sf-sf-sf - sf-sf-sf
- PTB needs a metrology bend, one would be enough

Linear Beam Dynamics

LEGO approach - the "one and only" (deterministic) MBA-Unit Cell (UC) for

- The two different MBA-UCs: $\mathbf{c f} \boldsymbol{\&} \mathbf{s f}$
- $\quad U C\left(4.5^{\circ}\right): Q _x y=(0.4,0.1), C h r o m _x y=(0.0,0.0)$
and for the hardware specifications of our project
Impact of reverse bend on alpha \& emittance Magnet arrangement

Linear Beam Dynamics

LEGO approach - Unit Cell - Impact of Reverse Bend

- The two different MBA-UCs: $\mathbf{c f} \& \mathbf{s f}$
- \quad UC $\left(4.5^{\circ}\right):$ Q_xy $=(0.4,0.1)$, Chrom_xy $=(0.0,0.0)$

$$
\epsilon_{0}=\frac{C_{q} \gamma^{2}}{j_{X}} \frac{I 5}{I 2}
$$

and for the hardware specifications of our project
Impact of reverse bend on alpha \& emittance Macnot arranamont
SF-UC with 1 m long main bends

Linear Beam Dynamics

LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC ?
- Magnet positioning/arrangement in that way, to reduce the sextupole strength for the chromatic correction \rightarrow as less as possible non-linear power

$$
\xi_{t o t} \sim \oint\left[k_{2}(s) D(s)-k_{1}(s)\right] \beta(s) d s
$$

- The of MBA-UC:

SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	$\begin{aligned} & \text { SUM(b3 * L) })^{2} \\ & \text { SF, SD }\left[1 / \mathrm{m}^{2}\right] \end{aligned}$	for Chrom = 0
SX, RB, SY, B	2.446 m	$2.5 \mathrm{e}-4$	95 pm rad	$\begin{aligned} & -0.38^{\circ}(\mathrm{k}=6.7) \\ & \mathrm{L}=0.163^{*} 2 \end{aligned}$	-0.701, -0.355	$\begin{aligned} & \text { 2324.77 } \\ & \text { 21.02, -26.84 } \end{aligned}$	
RB, SX, SY, B	2.490 m	2.7e-4	95 pm rad	$\begin{aligned} & -0.26^{\circ}(\mathrm{k}=6.8) \\ & \mathrm{L}=0.125 * 2 \end{aligned}$	-0.802, -0.278	$\begin{aligned} & 3905.21 \\ & 27.96,-34.22 \end{aligned}$	

Linear Beam Dynamics

LEGO approach - Unit Cell - Magnet arrangement

- How to set up the MBA-UC ?
- Magnet positioning/arrangement in that way, to reduce the sextupole strength for the chromatic correction \rightarrow as less as possible non-linear power

$$
\xi_{t o t} \sim \oint\left[k_{2}(s) D(s)-k_{1}(s)\right] \beta(s) d s
$$

- The sf MBA-UC:

SetUp	Length	alpha	Emittance	RB angle	Nat Chrom	$\begin{aligned} & \operatorname{SUM}(\mathrm{b} 3 * \operatorname{L})^{2} \\ & \text { SF, SD }\left[1 / \mathrm{m}^{2}\right] \end{aligned}$	for Chrom $=0$
SX, RB, QD, SY, B	2.670 m	2.0e-4	100 pm rad	$\begin{aligned} & -0.23^{\circ}(\mathrm{k}=8.6) \\ & \mathrm{L}=0.175^{\star} 2 \end{aligned}$	-0.751, -0.277	$\begin{aligned} & 901.43 \\ & 10.56,-18.42 \end{aligned}$	
SX, RB, SY, QD, B	2.610 m	2.1e-4	98 pm rad	$\begin{aligned} & -0.23^{\circ}(\mathrm{k}=8.5) \\ & \mathrm{L}=0.14^{*} 2 \end{aligned}$	-0.740, -0.295	$\begin{aligned} & 1500.19 \\ & 17.60,-20.98 \end{aligned}$	
RB, SX, QD, SY, B	$2.700 \mathrm{~m}$ Rings workshop	2.0e-4 , February 202	98 pm rad CERN, Geneva, Sw	$\begin{aligned} & -0.19^{\circ}(k=8.4) \\ & \text { zetrañol } 0.13 * 2 \end{aligned}$	-0.835, -0.232	$\begin{aligned} & 2781.58 \\ & 19.39,-31.86 \end{aligned}$	12 HZB

Linear Beam Dynamics

LEGO approach - Unit Cell -

- The two different MBA-UCs: cf \& sf
- $\operatorname{UC}\left(4.5^{\circ}\right):$ Q_xy $=(0.4,0.1)$, Chrom_xy $=(0.0,0.0)$

$$
\begin{aligned}
& \xi=\frac{\Delta Q}{\Delta p / p} \sim \oint-k_{1}(s) \beta(s) d s \\
& \xi_{t o t} \sim \oint\left[k_{2}(s) D(s)-k_{1}(s)\right] \beta(s) d s
\end{aligned}
$$

and for the hardware specifications of our project
Impact of reverse bend on alpha \& emittance Magnet arrangement

Non-Linear Beam Dynamics - TSWM, Chromatic Tune Shift

Non-Linear Beam Dynamics - TSWM, Chromatic Tune Shift

Non-Linear Beam Dynamics - Sextupole Split Up

${ }^{\text {In progress }}$

Non-linear optimization

- Defining target parameters for non-linear optimization and "knobs"
- Target parameters: (benchmark MAX IV, SLS2):
- Tune Shift With Momentum TSWM:
$\Delta \mathrm{Qx}, \Delta \mathrm{Qy} \sim 0.1$ at $\Delta \mathrm{p}=+-3 \%$ (+-5\%)
- Tune Shift with Amplitude TSWA: $\Delta \mathrm{Qx}, \Delta \mathrm{Qy} \sim 0.1$ limits acceptance $\sim 3 \mathrm{~mm}$
- Knobs:
- Chromatic Octupoles for 2 ${ }^{\text {nd }}$ order chromaticity
- Split up of chromatic sextupoles (TSWM + TSWA)
- Findings, Results:
- The two lattice candidates show an opposite behavior in order to reduce TSWM
- SF3 with biggest impact at sf lattice
- SF1 with biggest impact at cf lattice

Non-Linear Beam Dynamics - Sextupole Split Up

Non-linear optimization

Alpha buckets - higher order of mom.com

$$
\text { Thanks to A.Streun } \text { In progress }
$$

Limiting the momentum acceptance in the longitudinal plane

- cfcf, sfsf4Q

Alpha buckets - higher order of mom.com

Mismatch in momentum acceptance between longitudinal and transverse plane

Lattice variants	Mom.Acc. transverse plane $\delta_{\text {acc, } x, y}$ Chromatic Tune Shift TSWM,	Mom.Acc. longit. plane $\delta_{\text {acc, rf }}$	Alpha buckets
rf Acceptance			

D. Robin, E. Forest et al.,
"Quasi-isochronous storage rings", Phys. Rev. E 48, 2149, (1993)

- The often forgotten longitudinal plane ...

$$
x=x_{\beta}+D \delta+D_{1} \delta^{2}
$$

- Three oscillators in x, y, delta with three natural chromaticities, but only two sextupolesfamilies

$$
\Delta L / L_{0}=\alpha(\delta) \delta=\alpha_{0} \delta+\alpha_{1} \delta^{2}+\ldots
$$ for correction

- $\quad \alpha_{1}$ is the $2^{\text {nd }}$ order path lengthening is the longitudinal chromaticity

$$
\alpha_{0}=\frac{1}{L_{0}} \oint \frac{D}{\rho} d s
$$

$$
\alpha_{1}=\frac{1}{L_{0}} \oint \frac{D^{\prime 2}}{2}+\frac{D_{1}}{\rho} d s
$$

- Ratio of α_{0} / α_{1} defines the alpha bucket (unstable off-momentum fix point), and starts to limit the rf momentum acceptance

Alpha buckets - higher order of mom.com
 Natural Chromaticity in long. plane \& Knobs for Correction (or Attack)

$$
\begin{aligned}
& \text { In progress } \\
& \text { Michael Arlando }
\end{aligned}
$$

- Ratio of α_{0} / α_{1} limits the rf momentum acceptance
- Increase α_{0}, reduce RB \&/or lengthen main bend

$$
\alpha_{0}=\frac{1}{L_{0}} \oint \frac{D}{\rho} d s
$$

- Reduce α_{1}, figure out what is the biggest contribution

$$
\alpha_{1}=\frac{1}{L_{0}} \oint \frac{D^{\prime 2}}{2}+\frac{D_{1}}{\rho} d s
$$

Alpha buckets - higher order of mom.com

Natural Chromaticity in long. plane \& Knobs for Correction (or Attack)

$$
\begin{aligned}
& \text { In progress } \\
& \text { Michael Arlandoo }
\end{aligned}
$$

- Ratio of α_{0} / α_{1} limits the rf momentum acceptance
- Increase α_{0}, reduce RB \&/or lengthen main bend
- Reduce α_{1}, figure out what is the biggest contribution
$\alpha_{0}=\frac{1}{L_{0}} \oint \frac{D}{\rho} d s$
$\alpha_{1}=\frac{1}{L_{0}} \oint \frac{D^{\prime 2}}{2}+\frac{D_{1}}{\rho} d s$

The sf-UC with the additional vertical focussing quadrupole with very good separation of beta_xy functions at the chromatic sextupoles which guarantees for good TSWM,
generates small mom. Acc. in the longitudinal plane

Alpha buckets - higher order of mom.com
 Natural Chromaticity in long. plane \& Knobs for Correction (or Attack)

$$
\begin{aligned}
& \text { In progress } \\
& \text { Michael Arlandoo }^{\text {Mol }}
\end{aligned}
$$

- Ratio of α_{0} / α_{1} limits the rf momentum acceptance
- Increase α_{0}, reduce $\mathrm{RB} \& /$ or lengthen main bend

$$
\alpha_{0}=\frac{1}{L_{0}} \oint \frac{D}{\rho} d s
$$

$\alpha_{1}=\frac{1}{L_{0}} \oint \frac{D^{\prime 2}}{2}+\frac{D_{1}}{\rho} d s$

- Reduce α_{1}, figure out what is the biggest contribution

The sf-UC with the additional vertical focussing quadrupole with very good separation of beta_xy functions at the chromatic sextupoles which guarantees for good TSWM,
generates small mom. Acc. in the longitudinal plane

The process towards a BESSY III lattice

Robustness Analysis \& Simulated Commissioning

- J. Bengtsson with tracy or thor_scsi
- Robustness analysis against misalignments and magnet field uncertainties (errors), HOA, Phase Advance, Periodicity
- Conclusion: Two stable and robust solutions cfcf, sfsf4Q with $\sim 3 \%, 5 \%$ momentum acceptance
- T. Hellert with AT and Simulated Commissioning
- BBA, Correct Orbit, LOCO

The process towards a BESSY III lattice - Summary

LEGO approach - the UC

- Two robust solutions: cfff, sfsf4Q
- cfcf: less magnets, little bit shorter, but mom.acc_xy only ~2-3\%
- sfsf4Q: more magnets, strongly reduced sextupole strength for chromaticity correction, mom.acc_xy ~4-5\%
- Matching with longitudinal plane!
- Currently ongoing / Next steps:
- Non-linear optimisation scheme
- Robustness \& Tolerance analysis
- Injection scheme \& Collective effects
- Intensify discussions with construction \& engineering department

Thank you for your attention !

Backup Slides

Overview - BESSY II+ / III

Towards BESSY III by using BESSY II, BESSY II+
BESSY II+ paves the way to BESSY III

BESSY II+	BESSY II+ project						Operation									
	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	
BESSY III														7	mline T	
	CDR			TDR				Project/Construction					Com.		Operation	
	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	...

BESSY II+ application/project: operando capabilities, modernization, and sustainability.
$100 \mathrm{M} €(25 \% \mathrm{HZB}, 25 \%$ strategic partners or third-party projects, 50% request funding bodies) split up in
50% for 8 new beamlines, endstations \& sample environment,

15% for improving the sustainability of BESSY II, \qquad | BESSY III |
| :--- |
| Hardware / Tech. |

Future BESSY III Science Case 35% modernization of the accelerator complex

 - metrology suitable PM dipole

Hybrid-Permanent Magnets - replace power hungry (30 kW) bending electromagnet in BESSY II transferline

BESSY II Specialties

BESSY III

100x times more brightness than BESSY II \& 1000x times smaller focus at sample ($10 \mu \mathrm{~m}$ down to 10 nm)

Higher Order Achromat

Periodicity of Sextupoles and Phase Advance between Sextupoles

- Geometric resonance driving terms cancel if the phase advance between sextupole cells is chosen wisely.

The process towards a BESSY III lattice - Non-Linear Beam Dynamics

BESSY III

Beamline Requests \& Portfolio

\#	Name	Photon Energy	Main Methods	Main Applications
1	VUV to Hard	$5 \mathrm{eV}-20 \mathrm{keV}$	XPS, HAXPES, NEXAFS, STXM XPS, HAXPES, NEXAFS, STXM	Catalysis, Energy (Storage, Batteries, Solar Fuels)
	DIP	20 eV - 1.5 keV	UPS/XPS, NEXAFS, EXAFS, XPS, UPS, ARPES	Energy, Catalysis
2	Soft \& Tender	$100 \mathrm{eV}-4 \mathrm{keV}$	PES, HAXPES, TXM, XAS, XPCS Resonant Scattering, CDI	Energy (Batteries), Quantum Energy, Quantum
	DIP	$2 \cdot 14 \mathrm{keV}$	Diffraction/ EXAFS/XRF, NEXAFS,	Energy, Quantum, Catalysis
3	XUV to Soft	60 eV - 1.5 keV	BEIChem, XPS BEIChem, XPS	Catalysis, Chemistry Catalysis, Chemistry
	DIP	2-14 keV	XRD/EXAFS, WAXS, SAXS, HAXPES	Energy, Catalysis
4	Magnetic Imaging	$150 \mathrm{eV}-2 \mathrm{keV}$	Lensless Imaging, X-ray holography, XPCS STXM, Resonant Scattering, 3D mag. tomogr.	Quantum, Energy Quantum, Energy
	DIP	100 eV - 1.5 keV	XMCD, XAS with magnetic vector fields	Quantum, Energy
5	XUV Spectroscopy	$5-200 \mathrm{eV}$	ARPES nano-ARPES	Quantum, Energy, Catalysis Quantum, Energy Catalysis
	DIP	$80 \mathrm{eV}-4 \mathrm{keV}$	NEXAFS, XPS	Catalysis, Energy, Quantum
6	Soft \& Tender Imaging	$180 \mathrm{eV}-8 \mathrm{keV}$	TXM, FIB-TXM Tender TXM, Tomography	Life Sciences, Energy Life Sciences, Energy
	DIP	20 eV 1.5 keV	Soft X-ray spectroscopy	Catalysis, Energy, Quantum
7	Inelastic Scattering	$180 \mathrm{eV}-3 \mathrm{keV}$	RIXS meV@1keV RIXS	Quantum, Energy Catalysis Quantum, Energy, Catalysis
	DIP	$20 \mathrm{eV}-1.5 \mathrm{keV}$	Soft X-ray Dynamics	open port
8	Spectro Microscopy	$100 \mathrm{eV}-1.8 \mathrm{keV}$	(S)PEEM, PEEM, Ptychography nano-ARPES	Quantum, Energy, Catalysis Quantum, Energy, Catalysis
	DIP	100 eV - 4 keV	Broad band soft + tender X-ray spectroscopy	open port
9	Macromol. Crystallography	$5-20 \mathrm{keV}$	X-ray Diffraction X-ray Diffraction	Life Sciences Life Sciences
	DIP	$80 \mathrm{eV}-2 \mathrm{keV}$	Soft X-ray spectroscopy	open port
10	Multimodal Spectroscopy	$20 \mathrm{eV}-8 \mathrm{keV}$	Multimodal Spectroscopy Time-resolved spectroscopy	open port open port
	DIP	$20 \mathrm{eV}-3 \mathrm{keV}$	Declined beamline, Multimodal spectroscopy	Catalysis
11	PTB: PGM/EUV	$60 \mathrm{eV}-1.85 \mathrm{keV}$	Reflectometry / Scatterometry Reflectometry / Scatterometry	Metrology for Industry Metrology for Industry
	DIP PTB: FCM	$1.7 \mathrm{keV}-11 \mathrm{keV}$	X-ray radiometry / X-ray reflectometry	Metrology
12	PTB: PGM/RFA	$80 \mathrm{eV}-2 \mathrm{keV}$	X -ray spectometry X-ray spectometry	Materials Metrology Materials Metrology
	DIP PTB: white light	40 eV - 20 keV	Primary source standard BESSY III	Metrology
13	PTB: Tender X-ray	1 keV - 10 keV	μ-XRF/ (GI)SAXS / Ptychography μ-XRF/ (GI)SAXS / Ptychography	Materials Metrology, Energy Materials Metrology,
	DIP PTB: XPBF/ESA	$1 \mathrm{keV}-3 \mathrm{keV}$	X-ray optics for astrophysics	in-line Metrology for Manufacturing
14	BAMline	5 keV - 120 keV	Diffraction, XRF, μ CT Diffraction, XRF, μ CT	Materials Metrology Materials Metrology

P. Goslawski, iFAST - 9th Low Emittance Rings workshop, February 2024, CERN, Geneva, Switzerland

1st Milestone Lattice: HOA - Linear Beam Dynamics

LEGO approach - UC -

Angle distribution between UC \& DSC

Distribution of bending angles

- 16 sectors $\rightarrow 360 / 16=22.5^{\circ}$
- With a 6-MBA: $\quad 1 / 2+4+1 / 2$

○ $2.25^{\circ}+4.5^{\circ}+4.5^{\circ}+4.5^{\circ}+4.5^{\circ}+2.25^{\circ}$

- For our 6-MBA with 16 straights it is a 20-30\% reduction
- at $U C \sim 4.0^{\circ}$ and DSC $\sim 3.25^{\circ}$

