



# Complex bend lattice design for NSLS-II upgrade

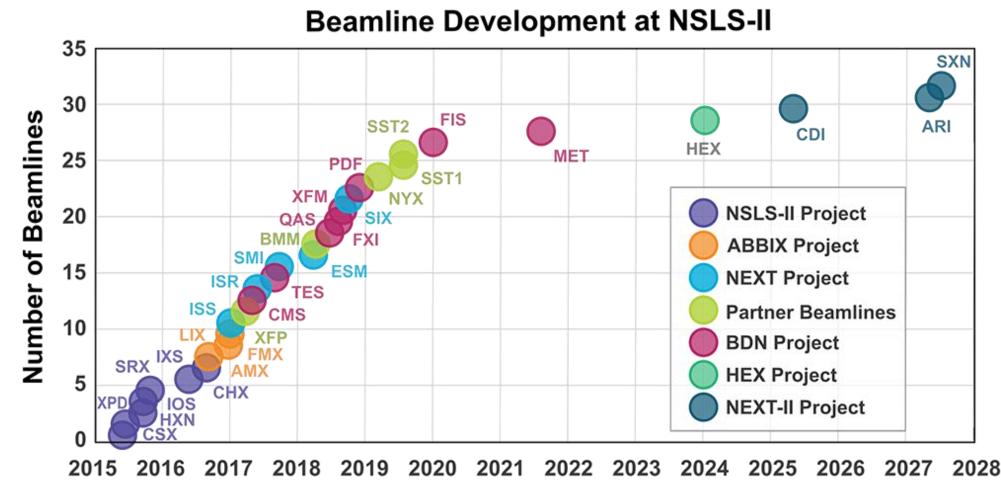
Yongjun Li on behalf of NSLS-II lattice upgrade design team

Feb. 13-16, 2024, I.FAST 9th Low Emittance Rings Workshop CERN, Geneva, Switzerland



#### Outline

- Status of NSLS-II
- Upgrade goals
- Concept of complex bend
- Approach of linear and nonlinear optics design
- Complex magnet modelling and integration



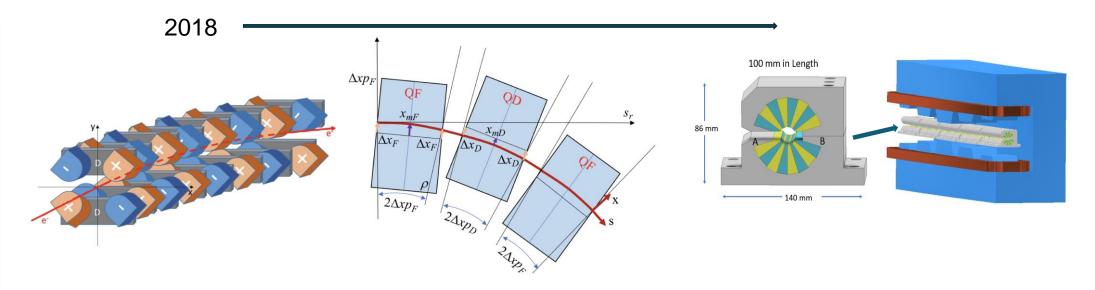

#### Status of NSLS-II: Accelerator

- Operation beam current 400mA, and with successful 500mA test operations
- >97% availability, submicron orbit stability with unified closed orbit feed-back
- >10 hrs beam lifetime with 30pm vertical emittance, 4-5 hrs for 8pm (diffraction limited)
- With 1-2% beta-beat, >95% top-off injection efficiency

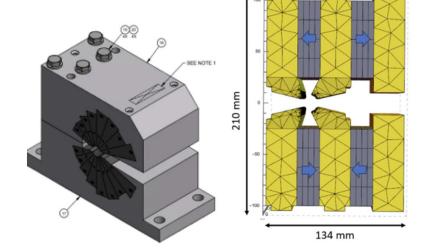


#### **Status of NSLS-II: Beamlines**






# Goal of NSLS-II upgrade


- Competitive brightness: diffraction-limited beam emittance 20-30pm
- High flux with top-off mode
- Fits with existing tunnel and X-ray ports
- Sufficient dynamic aperture for off-axis injection
- Sufficient local momentum aperture for reasonable lifetime
- Green facility with advanced permanent magnet technology



#### **Evolution of complex bend concept**



Shaftan et al., BNL Tech. Rep. (2018). Wang et al., PRAB 21, 100703 (2018). Wang, et al., PRAB 22, 110703 (2019) Song and Shaftan, <u>arXiv:2310.20010</u> (2023)

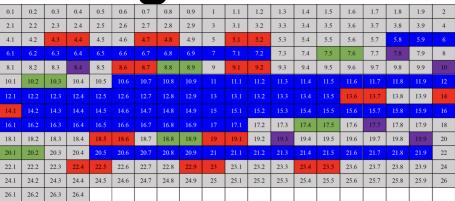


2023 (now) Hybrid

# Concept of complex bend (cont.)

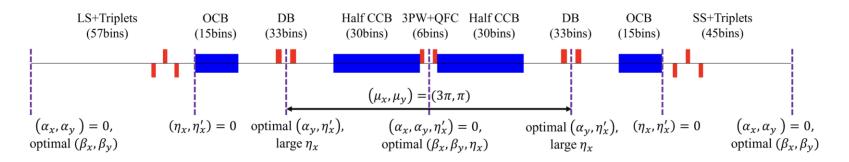
Novel method to using CB magnet array reduce beam emittance

- Small bend angle, large radius => small dispersion  $\eta_x$
- Focusing => Minimize  $\beta_x, \eta_x$ , synchrotron radiation integral  $I_5$
- Damping partition rates re-distribution between  $J_{x,s}$


Challenges:

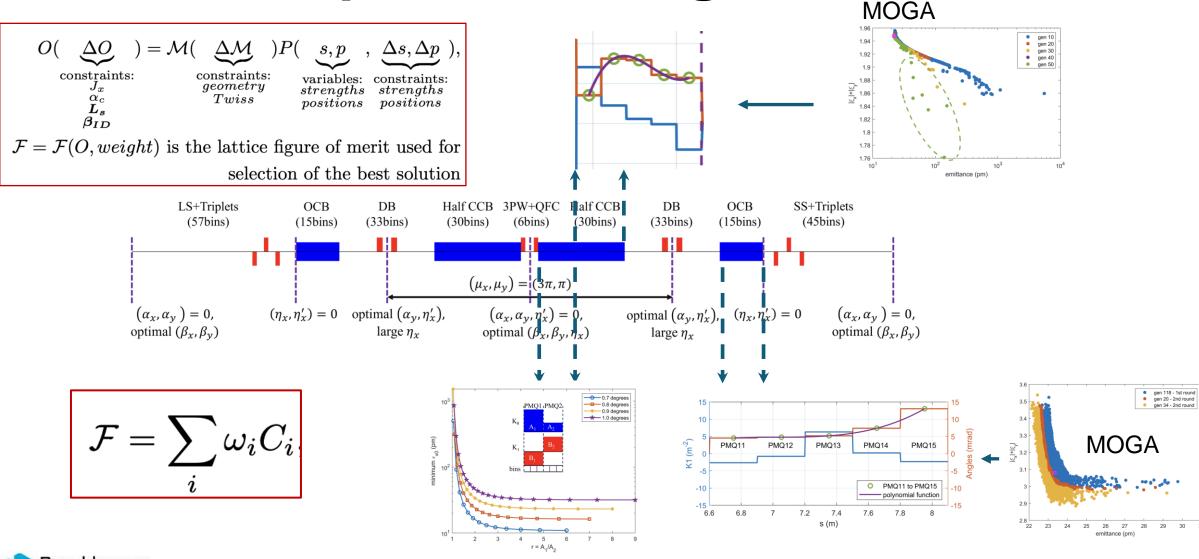
- Magnet module design and fabrication (see Shaftan's presentation, this workshop)
- Compact lattice structure with large betatron phase advance




# Approach of linear optics design

- Binning space approach for layout
  - Fitting with existing tunnel
  - Compatible with existing X-ray ports
  - Sufficient drift spaces for IDs
  - Local and global optimization modules

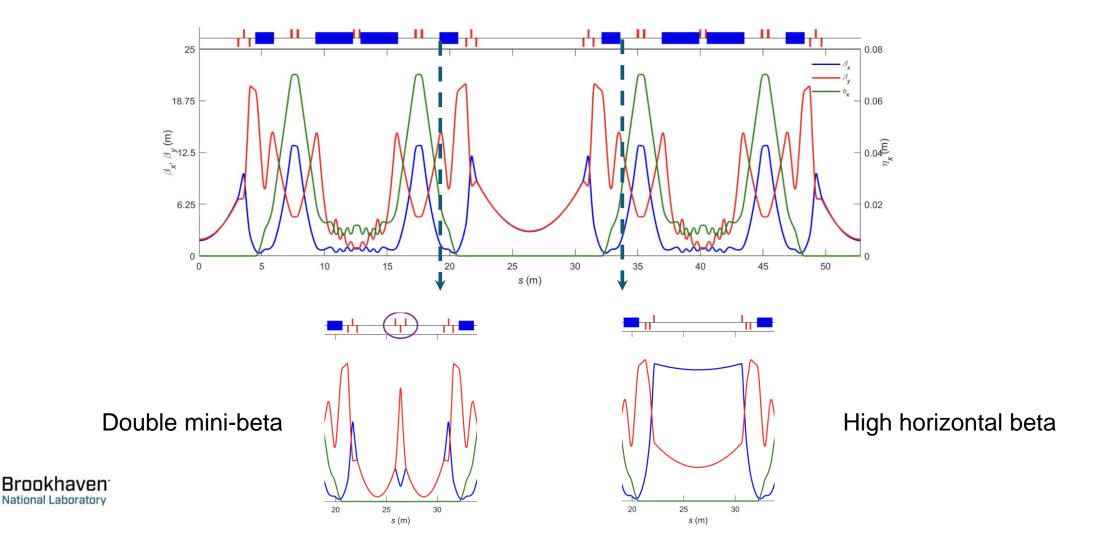



#### One cell geometry spaced with 0.1m bins

| K <sub>0</sub> | <b>K</b> <sub>1</sub> | K <sub>2</sub> | K <sub>3</sub> | Туре       |
|----------------|-----------------------|----------------|----------------|------------|
| 0              | 0                     | 0              | 0              | Drift      |
| 1              | 1                     | 0              | 0              | CB         |
| 0              | 1                     | 0              | 0              | Quadrupole |
| 0              | 0                     | 1              | 0              | Sextupole  |
| 0              | 0                     | 0              | 1              | Octupole   |






### Divide, conquer and integrate



Stookhaven<sup>\*</sup> National Laboratory

Song and Shaftan, <u>arXiv:2310.20010</u> (2023)

#### **Standard cell and variations**



#### **Comparison with NSLS-II**

| Paramters                                   |                       | Values                |  |  |
|---------------------------------------------|-----------------------|-----------------------|--|--|
|                                             | NSLS-II bare lattice  | NSLS-IIU              |  |  |
| Circumference $C$ [m]                       | 791.958               | 791.7679              |  |  |
| Beam energy $E$ [GeV]                       | 3                     | 3                     |  |  |
| Natural emittance $\epsilon_{x0}$ [pm-rad]  | 2086                  | 23.4                  |  |  |
| Damping partitions $(J_x, J_y, J_{\delta})$ | (1, 1, 2)             | (2.24, 1, 0.76)       |  |  |
| ${\rm Ring\ tunes\ }(\nu_x,\nu_y)$          | (33.22, 16.26)        | (84.67, 28.87)        |  |  |
| Natural chromaticities $(\xi_x, \xi_y)$     | (-98.5, -40.2)        | (-135, -144)          |  |  |
| Momentum compaction $\alpha_c$              | $3.63 \times 10^{-4}$ | $7.76 \times 10^{-5}$ |  |  |
| Energy loss per turn $U_0$ [keV]            | 286.4                 | 196                   |  |  |
| Energy spread $\sigma_{\delta}$ [%]         | 0.0514                | 0.073                 |  |  |
| $(\beta_x, \beta_y)$ at LS center [m]       | (20.1, 3.4)           | (2.95, 2.99)          |  |  |
| $(\beta_x,  \beta_y)$ at SS center [m]      | (1.8, 1.1)            | (1.87, 1.99)          |  |  |
| $(eta_{x,max},eta_{y,max})[{ m m}]$         | (29.99, 27.31)        | (13.37, 20.82)        |  |  |
| $(eta_{x,min},eta_{y,min})[{ m m}]$         | (1.84, 1.17)          | (0.35, 0.84)          |  |  |
| $(eta_{x,avg},eta_{y,avg})[{ m m}]$         | (12.58, 13.79)        | (3.99, 7.51)          |  |  |
| Length of LS [m]                            | 9.3                   | 8.4                   |  |  |
| Length of SS [m]                            | 6.6                   | 6.1                   |  |  |



#### **Nonlinear optics**

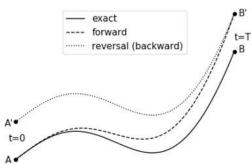
- Taking advantage of MBA's phase cancellation principle\*
- Using octupoles triplet to control high order geometrical resonances\*\*
- Using quadrupole triplets to adjust tune
- Intensive numerical studies on nonlinear lattice optimizations (next page)

\*Raimondi *et al. Commun Phys* **6**, 82 (2023) \*\*Plassard et al., PRAB **24**, 114801 (2021)



# Nonlinear optics optimizations

- Chaos map using forward-reversal integration (Li, 2021)
- Convergence map using square matrix (Yu, 2023)
- Control of NDT using octupole triplet (Plassard, 2021)

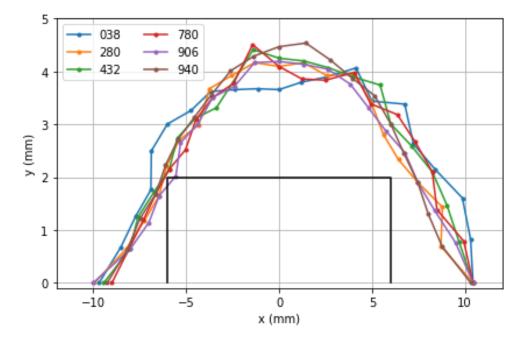

$$\vec{k_{\text{oct}}} = \mathcal{U}_{\text{oct}}^{-1} \cdot \vec{\alpha} \qquad \qquad \mathcal{U}_{\text{oct}} = \frac{1}{8\pi} \begin{pmatrix} \frac{1}{2}\beta_{x|\text{oct}_1}^2 & \frac{1}{2}\beta_{x|\text{oct}_2}^2 & \frac{1}{2}\beta_{x|\text{oct}_3}^2 \\ \frac{1}{2}\beta_{y|\text{oct}_1}^2 & \frac{1}{2}\beta_{y|\text{oct}_2}^2 & \frac{1}{2}\beta_{y|\text{oct}_3}^2 \\ -\beta_x\beta_{y|\text{oct}_1} & -\beta_x\beta_{y|\text{oct}_2} & -\beta_x\beta_{y|\text{oct}_3} \end{pmatrix}$$

- Data-driven chaos map (Li, 2022)
- Approximate Entropy chaos maps (Li, 2024)



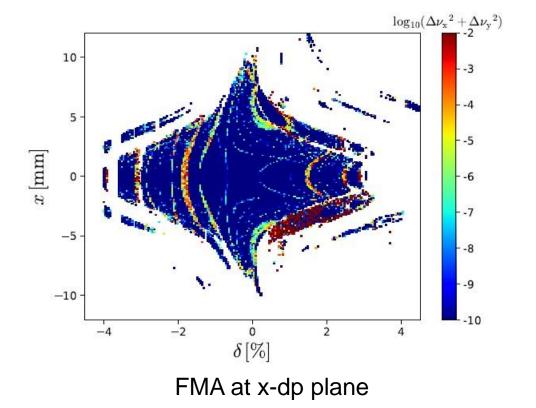
x (mm)

y (mm)




I 10.0

17.5 (a)




# Dynamic aperture and momentum aperture



On-momentum Dynamic apertures with different sext(3 Fam.)/oct(3 Fam.) settings Brookhaven

ational Laboratory



# Complex magnet modelling and integration into simulation

- Hard-edge models might not be sufficiently accurate
- Working with magnet experts on modelling
- In-house developed numerical method (Li and Huang, arXiv:1511.00710, 2015)
- Planning to adopt newly-developed techniques (see Lindberg's presentation, this workshop)
- Robustness check including imperfections, errors and corresponding correction
- Worst case (commissioning) simulations as APS-U and ALS-U



# Mitigation of intra-beam scattering effect

- IBS: Beam emittance blow-up and short lifetime due to small beam emittance
- Mitigations
  - Bunch lengthening with harmonic cavity, reducing  $J_s$ , longitudinal impedance
  - Strong radiation damping from insertion devices
  - Round beam mode (Li, PRAB **25**, 040702, 2022)
  - Increasing beam energy (rigidity) from 3 to 4GeV



#### Summary

- Complex bend achromat scheme was proposed for NSLS-II upgrade
- Preliminary optics is available, intensive design studies are needed to boost its maturity
- Engineering R&D carried out parallelly with optics design



#### Acknowledgments

- Teamwork: T. Shaftan, M. Song, V. Smaluk, G. Wang, Y. Hidaka, A. Khan, Aamna, G. Bassi, X. Yang, Y. Li, S. Sharma, B. Kosciuk, J. Choi, B. Park, P. N'Gotta, F. Plassard et al.
- Strong supports from BNL-LDRD, DOE basic energy office

