Lattice design for Korea-4GSR

Jimin Seok

on behalf of 4GSR Beam Dynamics Group Pohang Accelerator Laboratory, POSTECH

February 13, 2024

Outline

- Brief introduction to Korea-4GSR project
- Storage ring lattice design
- Booster ring and injection system
- Summary

Low Emittance Rings Workshop 2024

Brief introduction to Korea-4GSR project

Multipurpose Synchrotron Radiation Construction Project

Period: 2021 July to 2028 Feb. (7yrs) Budget: ~750M USD Location: Ochang, Chungcheongbuk-do

Beam energy: 4 GeV Beam emittance: less than 100 pm Circumference: 800 m

Ochang industrial complex

4GSR stands for 4th generation storage ring

Seoul

Korea-4GSR

Overview of Korea-4GSR

Building cross section

Booster and storage rings share a same tunnel

Booster RF cavity

Normal conducting 5 cell cavity, 500 MHz

EU type normal conducting HOM damped RF cavity, 500 MHz

Photocathode gun

Initial X-ray beamlines

• 10 X-ray beamlines are planned

X-ray energy	Note
5~20 keV	
5~40 keV	
0.1~5.0 keV	
0.005~2 keV	
3~30 keV	
8~30 keV	
4~40 keV	
5~20 keV	
5~100 keV	Long beamline
5~25 keV	Long beamline

PAL POHANG ACCELERATOR LABORATORY

Low Emittance Rings Workshop 2024

Storage ring lattice design

Storage ring lattice design

- The ring is composed of 28 H7BA cells (28 identical arcs, 26 ID SS + 2 high-beta SS) ٠
- -I transform between dispersion bumps cancels dominant resonance driving terms within a cell ٠
- Though the ring has 2-fold geometric symmetry, it has 28-cell symmetry in terms of on-momentum p ٠ hase advance ($\Delta \phi_{x,A} = \Delta \phi_{x,B}$ and $\Delta \phi_{y,A} = \Delta \phi_{y,B}$)

Parameters	Value
Energy (GeV)	4.0
Circumference (m)	799.297
Emittance (pm)	62
Tunes (H,V)	68.18, 23.26
Natural chromaticity (H,V)	-112.1, -85.3
Chromaticity (corrected) (H,V)	5.8 , 3.5
Hor. Damping partition	1.84
Momentum compaction	$0.78 imes \mathbf{10^{-4}}$
Energy spread (σ_{δ})	$1.26 imes \mathbf{10^{-3}}$
Energy loss per turn (MeV)	1.097
Main RF voltage (MV)	3.5
Beam current (mA)	400
Bunch length (σ_z) (mm) (w/o HC, w/ HC)	3.66 / 14.66

Why we choose High-beta section

RING_S : Ring with full periodic 28-cell (no high-beta straight) **RING_H** : Ring with 26 ID straights + 2 high-beta straights (28 identical arcs)

- RING_H has larger DA as much as ~ 1.45
- RING_H has smaller MA which result in 27% decrease of Touschek lifetime

Korea-4GSR lifetime

Flat beam : coupling 10%			Round	beam : coupling	100 %
Without HC	Without IBS	With IBS	Without HC	Without IBS	With IBS
Emittance (H/V)	58.40/5.84 pm	79.57/7.96 pm	Emittance (H/V)	39.91/39.91 pm	45.79/45.79 pm
Touschek lifetime	7.30 h	8.52 h	Touschek lifetime	17.04 h	17.38 h
With HC	Without IBS	With IBS	With HC	Without IBS	With IBS
Emittance (H/V)	58.40/5.84 pm	65.32/6.53 pm	Emittance (H/V)	39.91/39.91 pm	41.56/41.56 pm
Touschek lifetime	29.22 h	34.09 h	Touschek lifetime	68.18 h	66.39 h

Geometric RDTs up to 3rd order •

•

- The pseudo-symmetry keeps symmetry of geometric RDTs over the ring
- are not exactly matched

Chromatic RDTs are not fully periodic since chromaticities of high-beta cells

POHANG ACCELERATOR LABORATORY

Nonlinear Dynamics in SR

POHANG ACCELERATOR LABORATORY

250

SR simulation with error tolerances

Improvement of beta-beat and dispersion-beat over each correction step

BPM error

Offset (µm) (X/Y)	Roll (µrad)	Calibration error (%) (X/Y)
500 / 500	100	5 / 5

Magnet	Misalignment (µm) (X/Y/Z)	Rotation (µrad) (Roll/Pitch/Yaw)	Strength error (%)
LGBM	30 / 30 / 250	400 / 100 / 100	0.05
Combined-function magnet	30 / 30 / 250	400 / 100 / 100	0.05
Quadrupole	30 / 30 / 250	400 / 700 / 700	0.05
Center bend	30 / 30 / 250	400 / 100 / 100	0.05
Sextupole	30 / 30 / 250	400 / 700 / 700	0.05
Octupole	30 / 30 / 250	400 / 700 / 700	0.05
Girder	100 / 100 / 100	400 / - / -	

* 2-sigma cutoff is used for commissioning simulations

SR simulation with error tolerances

Equilibrium emittance

Corrector strengths after orbit correction are below mechanical limit (600 μ rad)

CDF of horizontal emittance after 3rd LOCO

CDF of vertical emittance after 3rd LOCO

Corrector strength

Dynamic Aperture and Momentum Aperture

Dynamic aperture

Momentum aperture

Low Emittance Rings Workshop 2024

Booster Ring and Injection system

Low Emittance Rings Workshop 2024

Booster Ring

Lattice functions of booster ring unit cell

Bo	oster	Value	Unit
	Circumference	772.893	m
	Beam Energy (Inj Ext.)	0.2 - 4	GeV
	Number of bends	60	
Design Parameters	Natural Emittance at 4 GeV	7886	pm rad
	Natural Emittance at 200 MeV	20	pm rad
	Momentum Compaction	0.000933	
	Horizontal Tune	19.226	-
Tune and Chromaticity	Vertical Tune	13.165	-
	Natural Horizontal Chromaticity	-27.1	-
	Natural Vertical Chromaticity	-18.2	-
	Horizontal Chromaticity	2	(target)
	Vertical Chromaticity	2	(target)
	Energy Loss per Turn	1671.3	keV
	Energy Spread	0.106	%
Padiation related	Horizontal Damping Time	8.5	ms
	Vertical Damping Time	12.3	ms
quantities	Longitudinal Damping Time	8.0	ms
at 4GeV	Synchrotron Frequency	4235	Hz
	Synchrotron Tune	0.0109	
	Bunch Length	11.1	mm

POHANG ACCELERATOR LABORATORY

Booster Ring Error Analysis

Magnet	Misalignment (μm) (X/Y/Z)	Rotation (µrad) (Roll/Pitch/Yaw)	Strength error (%)
Bend (dipole- quadrupole)	200 / 200 / 400	400 / 100 / 100	0.10
Quadrupole	200 / 200 / 400	400 / 700 / 700	0.10
Sextupole	200 / 200 / 400	400 / 700 / 700	0.10

Error tolerance used for error analysis

CDF of beta-beat after orbit correction Beta-beat before/after orbit correction

12

10

y (mm) 6 $\frac{dp}{p} = 0$

*Booster ring has 120 H/V correctors and 120 BPMs

POHANG ACCELERATOR LABORATORY

Dynamic aperture after orbit correction

w/o error

Booster to storage ring

Injection efficiency scan results

4-kicker bump injection scheme

POHANG ACCELERATOR LABORATORY

Summary

- Korea-4GSR adopted Hybrid 7 bend achromat for energy of 4 GeV and circumference of 800 m
- Storage ring composed of 28 unit cells, 26 ID sections and 2 high-beta sections.
- Even though the high-beta sections reduce the Touschek lifetime, we can secure larger dynamic aperture for off-axis injection.
- We investigated storage ring simulations with realistic error tolerances to prepare future commissioning.
- Booster has 60 FODO cells and increases the beam energy from 200 MeV to 4 GeV.
- Four kicker bump injection is being prepared for the storage ring.

Thank you for your attention

Low Emittance Rings Workshop 2024

Backup

Beam Lifetime

Flat beam : coupling 10%			Round	beam : coupling	100%
Without HC	Without IBS	With IBS	Without HC	Without IBS	With I
Emittance (H/V)	58.40/5.84 pm	79.57/7.96 pm	Emittance (H/V)	39.91/39.91 pm	45.79/45.7
Touschek lifetime	7.30 h	8.52 h	Touschek lifetime	17.04 h	17.38
With HC	Without IBS	With IBS	With HC	Without IBS	With I
Emittance (H/V)	58.40/5.84 pm	65.32/6.53 pm	Emittance (H/V)	39.91/39.91 pm	41.56/41.5
Touschek lifetime	29.22 h	34.09 h	Touschek lifetime	68.18 h	66.39

Touschek lifetime with ideal lattice

Elastic scattering lifetime under vacuum pressure of 10^{-9} mbar

Bremsstrahlung lifetime under vacuum pressure of 10^{-9} mbar

Gas	Lifetime [h]	
H ₂	1025.4	
со	36.0	
CO ₂	22.1	
N ₂	36.6	

Gas	Lifetime [h]	
H ₂	2273.3	
СО	98.6	
CO ₂	60.6	
N ₂	100.1	

Intra Beam Scattering

Harmonic cavities help reducing emittance growth due to the IBS effect ٠

 $x_{\texttt{COD}}^2 = \beta(z) \mathbf{A}_{\mathit{\Delta}\mathtt{x}}^2 \, \sigma_{\mathit{\Delta}\mathtt{x}}^2 + \beta(z) \mathbf{A}_{\mathit{\Delta}\mathtt{B}/\mathtt{B}}^2 \, \sigma_{\mathit{\Delta}\mathtt{B}/\mathtt{B}}^2 + \beta(z) \mathbf{A}_{\mathit{\Delta}\theta}^2 \, \sigma_{\mathit{\Delta}\theta}^2$

Independent corrector A_{AB} with $\sigma_{AB}^2 = 500 \,\mu rad$

name	A_x	A_y	$A = \sqrt{A_x^2 + A_y^2}$
11	0.12	0.05	0.13
12	0.15	0.12	0.20
13	0.27	0.17	0.32
4	0.06	0.10	0.11
1	1.09	0.76	1.33
2	0.42	0.81	0.91
1	0.56	1.00	1.14
2	0.49	0.88	1.01
1	0.93	0.80	1.22
2	0.34	0.52	0.62
M1	0.16	0.68	0.70
M2	0.20	0.35	0.40
51	0.20	0.25	0.32
ΝT	0.06	0.13	0.14

Magnet name	A_x	A_y	$A = \sqrt{A_x^2 + A_y^2}$
QH1	27.54	11.46	29.83
QH2	20.03	16.35	25.85
QH3	22.34	13.73	26.22
QH4	12.29	19.39	22.95
Q11	64.88	45.15	79.04
Q12	37.18	70.92	80.07
Q31	50.39	89.75	102.93
Q32	44.04	79.20	90.62
Q51	33.02	28.58	43.67
Q52	21.88	33.16	39.73
S31	64.50	79.82	102.62
S32	91.70	57.17	108.06
S33	54.82	74.02	92.11
Corrector1	54.11	55.38	77.43
Corrector2	33.81	27.69	43.71

PAL POHANG ACCELERATOR LABORATORY

Correction Chain

Correction chain

- Lattice ensemble of 50 random error seeds is generated after applying the correction chain to each error seed ٠
- In the simulation, •
 - Existence of 1-turn trajectory means that 1 turn transmission is achieved •
 - Existence of closed orbit means that a fixed point x exists such that x = Mx where M is one turn map (AT function 'findorbit6' is used)

PAL POHANG ACCELERATOR LABORATORY

Toolkit for Simulated Commissioning (SC): https://sc.lbl.gov/

Parameter	Value			
Maximum current	1 mA			
Injection speed	2 mA/s			
Repetition rate	2 Hz			
Harmonic number	1288			
Time to fill SR up to 400 mA	200 s			
RF voltage	0.3 MV (@ 200 MeV) 3 MV (@ 4 GeV)			

Korea-4GSR Booster ramping cycle

Off energy dynamic aperture

PAL POHANG ACCELERATOR LABORATORY

Nonlinear kicker for Korea-4GSR

- It is known that nonlinear kicker injection is one of methods to realize transparent injection
- Currently used at MAX-IV, SIRIUS, SOLEIL
- 4-Kicker injection scheme is still main injection scheme for Korea-4GSR, and nonlinear injection
- has optimized specification for Korea-4GSR

Schematic layout of nonlinear kicker injection for Korea-4GSR

scheme could be applied for Korea-4GSR upgrade

We started R&D to make a nonlinear kicker which

R&D Status

Field flux shape (one quadrant) and field profile along xdirection of a 525 mm nonlinear kicker

A 200 mm test model will be tested soon

Beam stay clear H ~ ±9.15 mm V ~ ±3.66 mm

Ceramic vacuum chamber

<Simulation Result @ NLK Inductance 0.68uH>

Kicker modulation simulation result

Comparison of Nonlinear Kicker Specifications

Storage ring	Storage ring energy (GeV)	Storage ring circumference / revolution time	Nonlinear kicker type	Injection point	Pulse length (1/4 sine wave, from zero to peak)	Peak field	Peak current
PF	2.5	187 m / 0.62 us	PSM	15 mm	0.6 us	40 mT at x=15 mm	3000 A
BESSY-II	1.7	240 m / 0.80 us	MIK	-12 mm	0.75 us	25 mT at x=12 mm	2800 A
MAX IV	3.0	528 m / 1.76 us	МІК	-5 mm	-	-	-
SOLEIL	2.75	354 m / 1.18 us	MIK	-10 mm	1.2 us	82 mT at x=-10 mm	3300 A
SIRIUS	3.0	518 m / 1.73 us	МІК	-8 mm	1.64 us	107 mT at x=-9 mm	1850 A
*Korea-4GSR	4.0	800 m / 2.67 us	MIK	-5 mm	2.50 us	148 mT at x = -9 mm	3000 A

*Under R&D study

