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Formulas used in this slides are derived from: https://arxiv.org/abs/1711.06589v2
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JACOBIAN OF THE ORBIT RESPONSE MATRIX 

• In order to perform a linear lattice modelling and correction, the Jacobian of the ORM needs to be 
computed, SVD pseudo-inverted & applied to the measured ORM & dispersion.
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• In order to perform a linear lattice modelling and correction, the Jacobian of the ORM needs to be 
computed, SVD pseudo-inverted & applied to the measured ORM & dispersion.

• Numerical Jacobian: replicate in simulation the measurement: For each variation of the quadrupole 
strength, compute ORM from orbit calculations @ each steerer variation. 
ü Pros: accurate, can be parallelized
ü Cons: time consuming, if optics or orbit unstable for quadrupole variation it can fail.
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each quadrupole variation.
ü Pros: faster than numerical, can be parallelized
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ü Pros: faster than numerical, can be parallelized
ü Cons: no analytic formulas for off-diagonal ORM blocks (coupling), it can fail if optics or orbit unstable for quadrupole variation.

• Fully analytic Jacobian: evaluate directly the Jacobian from Twiss parameters of the initial model (ideal or 
from beam-based measurements)
ü Pros: coupling & dispersion included, only one computation of Twiss parameters needed, no orbit calculation needed, faster than 

pseudo-analytic, can be parallelized
ü Cons: tedious to code.
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j -> BPM

m -> magnet



JACOBIAN OF THE ORBIT RESPONSE MATRIX 

• In order to perform a linear lattice modelling and correction, the Jacobian of the ORM needs to be 
computed, SVD pseudo-inverted & applied to the measured ORM & dispersion.

• Numerical Jacobian: replicate in simulation the measurement: For each variation of the quadrupole 
strength, compute ORM from orbit calculations @ each steerer variation. 
ü Pros: accurate, can be parallelized
ü Cons: time consuming, if optics or orbit unstable for quadrupole variation it can fail.

• Pseudo-analytic Jacobian: use textbook formulas to evaluate ORM after computing Twiss parameters at 
each quadrupole variation.
ü Pros: faster than numerical, can be parallelized
ü Cons: no analytic formulas for off-diagonal ORM blocks (coupling), it can fail if optics or orbit unstable for quadrupole variation.

• Fully analytic Jacobian: evaluate directly the Jacobian from Twiss parameters of the initial model (ideal or 
from beam-based measurements)
ü Pros: coupling & dispersion included, only one computation of Twiss parameters needed, no orbit calculation needed, faster than 

pseudo-analytic, can be parallelized
ü Cons: tedious to code.

• Observation: the accuracy of the two analytic approaches can be poor if thin-element model is used. 
Corrections to account for the variation of Twiss parameters across magnets have been included which 
reduce dramatically the errors w.r.t. the numerical version (see next slide). 
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NUMERICAL VS ANALYTIC JACOBIAN OF THE ORM: ACCURACY

Example: FCC quadrupole ORM Jacobian with

• 1600 BPMs
• 8 steerers

• 1 quadrupole QC1L1_1
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NUMERICAL VS ANALYTIC JACOBIAN OF THE ORM: ACCURACY

Example: FCC quadrupole ORM Jacobian with

• 1600 BPMs
• 8 steerers

• 1 quadrupole QC1L1_1

• RMS & MAX error computed over all columns & rows of the diagonal ORM blocks O(xx) & O(yy). 
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NUMERICAL VS ANALYTIC JACOBIAN OF THE ORM: CPU TIME

Example: FCC quadrupole ORM Jacobian N (diagonal blocks only) with
• 1600 BPMs
• 8 steerers
• 360 quadrupoles parallelized over 64 cores CPUs (for both numerical and analytic tests)
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Results
• Numeric:         1807.1 s   [100%]
• fully analytic:    221.1 s   [ 12%]  (room for further optimization)



NUMERICAL VS ANALYTIC JACOBIAN OF THE ORM: OPTICS CORRECTION
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ANALYTIC TUNE VARIATION WITH THICK QUADRUPOLES

Quad: DQF1J=0.023%

error DQH (num-ana): -0.16%

error DQv (num-ana):  0.14%

error DQH (num-ana): −0.0005 % 
error DQv (num-ana):    0.0024 % 
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ANALYTIC TUNE VARIATION WITH THICK QUADRUPOLES

Quad: DQFG2-1 = 0.184 % 

error DQH (num-ana):  2.2%

error DQv (num-ana): 0.38%

error DQH (num-ana):   0.0003 %  
error DQv (num-ana): −0.0008 % 
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THICK STEERERS IN CLASSIC ANALYTIC ORM FORMULA
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WHERE YOU CAN FIND US

https://gitlab.esrf.fr/BeamDynamics/commissioningsimulations

Commissioning tools are still poor in terms of documentation, and 
debugging. The inclusion into the pyAT repository is pending such 
extensive validation tests.

Modules for the fully analytic ORM Jacobian can be found here: 
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https://gitlab.esrf.fr/BeamDynamics/commissioningsimulations/-
/tree/main/commissioningsimulations/correction/optics_coupling
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OUTLOOK: THICK-ELEMENT CORRECTION FOR RDTS
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Thick-element corrections are being implemented to RDTs



OUTLOOK: A NEW WAY TO COMPUTE LINEAR RDTS
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New formulas from OTM

From analytic formulas From particle tracking + harmonic analysis



OUTLOOK: A NEW WAY TO COMPUTE LINEAR RDTS
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Very accurate for single-quad error (thus ok for response matrix)



OUTLOOK: A NEW WAY TO COMPUTE LINEAR RDTS
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Less accurate for distributed errors (2nd order & coupling terms)



OUTLOOK: A NEW WAY TO COMPUTE LINEAR RDTS
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New formulas for coupling RDTs from OTM are still to be 
derived



OUTLINE

• Part 1: The implementation (12’)

• Part 2: The repository (1’)

• Part 3: outlook (3’)

Thank you!
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SOME THOUGHTS ON NON-LINEAR OPTIMIZATION
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minimize chromaticity

minimize detuning with amplitude

Simone Liuzzo

4D

6D rad off
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minimize chromaticity

minimize detuning with amplitude

Simone Liuzzo

4D

6D rad off

My old-standing puzzle: Where does all this 

reduction of DA come from?
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• My guess: Blame path lengthening 

and synchrotron motion for that.

P. Raimondi

Jx -> d ≠ 0
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• My guess: Blame path lengthening 

and synchrotron motion for that.

• Most of the time they will be off-axis 

(Jx≠0) and off-energy (d ≠ 0), thus, 

outside the 3 axis of the tune space.

P. Raimondi

Jx -> d ≠ 0
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Consequence: Minimizing cross-term (betatron+chromatic) detuning terms 

could be as much, if not more, effective than minimizing purely higher-order 

betatron or chromatic terms
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minimize chromaticity

minimize detuning with amplitude

Maybe we shall also 
minimize the cross 

term along with 
higher-order terms
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Blame path lengthening: Actually, minimizing linear chroma is still very helpful, 

since path lengthening and chroma are highly correlated


