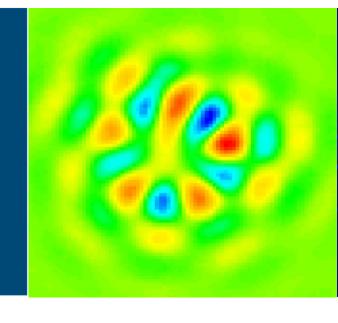


Symplectic tracking through arbitrary magnetic fields



Ryan Lindberg

Accelerator Systems Division, Argonne National Laboratory

I.FAST Low Emittance Rings Workshop 2024 CERN, Geneva, Switzerland. February 13th, 2024

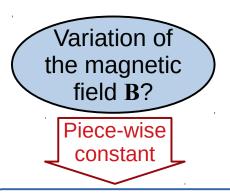
Outline and acknowledgments

- Background to symplectic tracking through arbitrary fields
- Our choice to tackle the problem: generalized gradients + implicit integration
- Examples of results using the APS-Upgrade lattice
- Existing challenges for large-angle dipoles and possible solutions
- Conclusions

Outline and acknowledgments

- Background to symplectic tracking through arbitrary fields
- Our choice to tackle the problem: generalized gradients + implicit integration
- Examples of results using the APS-Upgrade lattice
- Existing challenges for large-angle dipoles and possible solutions
- Conclusions

- Acknowledgments:
 - Michael Borland and Bob Soliday (APS)
 - Marco Venturini (ALS/ALS-U)
 - LCRC Bebop cluster at ANL and weed cluster at ASD



Vector potential $\mathbf{A} = \mathbf{A}_{\mathrm{s}}(x,y)\mathbf{s}$ $H = T(p_{x},p_{y}) + \mathbf{A}_{\mathrm{s}}(x,y)$ Operator splitting yields explicit, symplectic integrators along $s^{[1,2]}$ (kick/drift/kick)

- [1] E. Forest and R.D. Ruth. "Fourth-order symplectic integration," Physica D 43, 105 (1990).
- [2] H. Yoshida. "Construction of higher order symplectic integrators," Phys. Lett. A 150, 262 (1990)

An explicit, symplectic integrator for non-canonical coords exists if the numerical representation has $\nabla \cdot \mathbf{B} = 0$ everywhere^[3]

Variation of the magnetic field **B**?

Arbitrary variation

Paraxial/small angle approx. + magnetic field **B**

Restrictions to particle motion?

Piece-wise constant

Vector potential $\mathbf{A} = \mathbf{A}_{\mathrm{s}}(x,y)\mathbf{s}$

$$H = T(p_x, p_y) + A_s(x, y)$$

Operator splitting yields explicit, symplectic integrators along $s^{[1,2]}$ (kick/drift/kick)

^[1] E. Forest and R.D. Ruth. "Fourth-order symplectic integration," Physica D 43, 105 (1990).

^[2] H. Yoshida. "Construction of higher order symplectic integrators," Phys. Lett. A 150, 262 (1990)

^[3] Y. He, Z.Q. Zhou, Y.J. Sun, J. Liu, and H. Qin. "Explicit K-symplectic algorithms for charged particle dynamics," Phys. Lett. A 381, 568 (2017).

An explicit, symplectic integrator for non-canonical coords exists if the numerical representation has $\nabla \cdot \mathbf{B} = 0$ everywhere^[3]

Variation of the magnetic field **B**?

Arbitrary variation

Paraxial/small angle approx. + magnetic field **B**

Restrictions to particle motion?

Piece-wise constant

Paraxial/small angle approx. + vector potential **A**

Vector potential $\mathbf{A} = \mathbf{A}_{s}(x,y)\mathbf{s}$

$$H = T(p_x, p_y) + A_s(x, y)$$

Operator splitting yields explicit, symplectic integrators along $s^{[1,2]}$ (kick/drift/kick)

Hamiltonian is quadratic, and explicit, symplectic integration along s is possible if we also know certain spatial integrals of \mathbf{A} . [4,5]

^[1] E. Forest and R.D. Ruth. "Fourth-order symplectic integration," Physica D 43, 105 (1990).

^[2] H. Yoshida. "Construction of higher order symplectic integrators," Phys. Lett. A 150, 262 (1990)

^[3] Y. He, Z.Q. Zhou, Y.J. Sun, J. Liu, and H. Qin. "Explicit K-symplectic algorithms for charged particle dynamics," Phys. Lett. A 381, 568 (2017).

^[4] Y. K. Wu, E. Forest, and D. S. Robin. "Explicit symplectic integrator for s-dependent static magnetic field," Phys. Rev. E 68, 046502 (2003)

^[5] A. Wolski and A.T. Herrod, "Explicit symplectic integrator for particle tracking...with curved reference trajectory," PRST-AB 21, 084001 (2018).

An explicit, symplectic integrator for non-canonical coords exists if the numerical representation has $\nabla \cdot \mathbf{B} = 0$ everywhere^[3]

Variation of the magnetic field **B**?

Arbitrary variation

Paraxial/small angle approx. + magnetic field **B**

Restrictions to particle motion?

Paraxial/small

angle approx. + vector potential **A**

Arbitrary particle angles

Independent Variable: t or s?

Piece-wise constant

Vector potential $\mathbf{A} = \mathbf{A}_{s}(x,y)\mathbf{s}$

$$H = T(p_x, p_y) + A_s(x, y)$$

Operator splitting yields explicit, symplectic integrators along $s^{[1,2]}$ (kick/drift/kick)

Hamiltonian is quadratic, and explicit, symplectic integration along s is possible if we also know certain spatial integrals of A. [4,5]

- [1] E. Forest and R.D. Ruth. "Fourth-order symplectic integration," Physica D 43, 105 (1990).
- [2] H. Yoshida. "Construction of higher order symplectic integrators," Phys. Lett. A 150, 262 (1990)
- [3] Y. He, Z.Q. Zhou, Y.J. Sun, J. Liu, and H. Qin. "Explicit K-symplectic algorithms for charged particle dynamics," Phys. Lett. A 381, 568 (2017).
- [4] Y. K. Wu, E. Forest, and D. S. Robin. "Explicit symplectic integrator for s-dependent static magnetic field," Phys. Rev. E 68, 046502 (2003)
- [5] A. Wolski and A.T. Herrod, "Explicit symplectic integrator for particle tracking...with curved reference trajectory," PRST-AB 21, 084001 (2018).

An explicit, symplectic integrator for non-canonical coords exists if the numerical representation has $\mathbf{\nabla} \cdot \mathbf{B} = 0$ everywhere^[3]

Quadratic Hamiltonian can be found and explicit, symplectic integration in time is possible if we know $\bf A$ and certain spatial integrals $\bf A$ of everywhere [4]

Variation of the magnetic field **B**?

Arbitrary variation

Paraxial/small angle approx. + magnetic field **B**

Restrictions to particle motion?

Paraxial/small angle approx. + vector potential **A** Integrate along t

Independent Variable: t or s?

Piece-wise constant

Vector potential $\mathbf{A} = \mathbf{A}_{s}(x,y)\mathbf{s}$

$$H = T(p_x, p_y) + A_s(x, y)$$

Operator splitting yields explicit, symplectic integrators along $s^{[1,2]}$ (kick/drift/kick)

Hamiltonian is quadratic, and explicit, symplectic integration along s is possible if we also know certain spatial integrals of A. [4,5]

- [1] E. Forest and R.D. Ruth. "Fourth-order symplectic integration," Physica D 43, 105 (1990).
- [2] H. Yoshida. "Construction of higher order symplectic integrators," Phys. Lett. A 150, 262 (1990)
- [3] Y. He, Z.Q. Zhou, Y.J. Sun, J. Liu, and H. Qin. "Explicit K-symplectic algorithms for charged particle dynamics," Phys. Lett. A 381, 568 (2017).
- [4] Y. K. Wu, E. Forest, and D. S. Robin. "Explicit symplectic integrator for s-dependent static magnetic field," Phys. Rev. E 68, 046502 (2003)

Arbitrary

particle angles

[5] A. Wolski and A.T. Herrod, "Explicit symplectic integrator for particle tracking...with curved reference trajectory," PRST-AB 21, 084001 (2018).

An explicit, symplectic integrator for non-canonical coords exists if the numerical representation has $\mathbf{\nabla} \cdot \mathbf{B} = 0$ everywhere^[3]

Quadratic Hamiltonian can be found and explicit, symplectic integration in time is possible if we know $\bf A$ and certain spatial integrals $\bf A$ of everywhere [4]

Variation of the magnetic field **B**?

Piece-wise

constant

Arbitrary variation

Paraxial/small angle approx. + magnetic field **B**

Restrictions to particle motion?

Paraxial/small angle approx. + vector potential **A** Arbitrary particle angles

Independent
Variable:

Integrate

t or s?

Integrate along s

Vector potential $\mathbf{A} = \mathbf{A}_{s}(x,y)\mathbf{s}$ $H = T(p_{x},p_{y}) + \mathbf{A}_{s}(x,y)$ Operator splitting yields

explicit, symplectic integrators along $s^{[1,2]}$ (kick/drift/kick)

Hamiltonian is quadratic, and explicit, symplectic integration along s is possible if we also know certain spatial integrals of \mathbf{A} . [4,5]

Symplectic integration using implict methods are possible if we also have A(x,y) and their derivatives on a grid in s.

- [1] E. Forest and R.D. Ruth. "Fourth-order symplectic integration," Physica D 43, 105 (1990).
- [2] H. Yoshida. "Construction of higher order symplectic integrators," Phys. Lett. A 150, 262 (1990)
- [3] Y. He, Z.Q. Zhou, Y.J. Sun, J. Liu, and H. Qin. "Explicit K-symplectic algorithms for charged particle dynamics," Phys. Lett. A 381, 568 (2017).
- [4] Y. K. Wu, E. Forest, and D. S. Robin. "Explicit symplectic integrator for s-dependent static magnetic field," Phys. Rev. E 68, 046502 (2003)
- [5] A. Wolski and A.T. Herrod, "Explicit symplectic integrator for particle tracking...with curved reference trajectory," PRST-AB 21, 084001 (2018).

Our choice for symplectic integration

We track particles using (symplectic) implicit midpoint method

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n + \Delta s \frac{\partial}{\partial \boldsymbol{p}} \mathcal{H} \left[\frac{1}{2} (\boldsymbol{x}_{n+1} + \boldsymbol{x}_n), \frac{1}{2} (\boldsymbol{p}_{n+1} + \boldsymbol{p}_n); s + \frac{1}{2} \Delta s \right]$$

$$\boldsymbol{p}_{n+1} = \boldsymbol{p}_n - \Delta s \frac{\partial}{\partial \boldsymbol{x}} \mathcal{H} \left[\frac{1}{2} (\boldsymbol{x}_{n+1} + \boldsymbol{x}_n), \frac{1}{2} (\boldsymbol{p}_{n+1} + \boldsymbol{p}_n); s + \frac{1}{2} \Delta s \right]$$

using the single particle Hamiltonian in Cartesian coordinates

$$\mathcal{H} = \sqrt{(1+\delta)^2 - [p_x - a_x(x,y;s)]^2 - [p_y - a_y(x,y;s)]^2} - a_z(x,y;s)$$

Our choice for symplectic integration

We track particles using (symplectic) implicit midpoint method

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n + \Delta s \frac{\partial}{\partial \boldsymbol{p}} \mathcal{H} \left[\frac{1}{2} (\boldsymbol{x}_{n+1} + \boldsymbol{x}_n), \frac{1}{2} (\boldsymbol{p}_{n+1} + \boldsymbol{p}_n); s + \frac{1}{2} \Delta s \right]$$

$$\boldsymbol{p}_{n+1} = \boldsymbol{p}_n - \Delta s \frac{\partial}{\partial \boldsymbol{x}} \mathcal{H} \left[\frac{1}{2} (\boldsymbol{x}_{n+1} + \boldsymbol{x}_n), \frac{1}{2} (\boldsymbol{p}_{n+1} + \boldsymbol{p}_n); s + \frac{1}{2} \Delta s \right]$$

using the single particle Hamiltonian in Cartesian coordinates

Initial coordinates
$$(x_n, p_n)$$
 (x_{n+1}, p_{n+1})

S Only need the $s + \Delta s$ vector potential at the midpoint $s + \Delta s/2$

$$\mathcal{H} = \sqrt{(1+\delta)^2 - [p_x - a_x(x,y;s)]^2 - [p_y - a_y(x,y;s)]^2} - a_z(x,y;s)$$

• Tracking requires a numerical representation of the vector potential $\mathbf{A}(x,y;s_n+\Delta s/2)$ and its derivatives

Our choice for symplectic integration

• We track particles using (symplectic) implicit midpoint method

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n + \Delta s \frac{\partial}{\partial \boldsymbol{p}} \mathcal{H}\big[\tfrac{1}{2}(\boldsymbol{x}_{n+1} + \boldsymbol{x}_n), \tfrac{1}{2}(\boldsymbol{p}_{n+1} + \boldsymbol{p}_n); s + \tfrac{1}{2}\Delta s\big]$$

$$\boldsymbol{p}_{n+1} = \boldsymbol{p}_n - \Delta s \frac{\partial}{\partial \boldsymbol{x}} \mathcal{H} \left[\frac{1}{2} (\boldsymbol{x}_{n+1} + \boldsymbol{x}_n), \frac{1}{2} (\boldsymbol{p}_{n+1} + \boldsymbol{p}_n); s + \frac{1}{2} \Delta s \right]$$

using the single particle Hamiltonian in Cartesian coordinates

Initial coordinates
$$(x_n, p_n)$$
 (x_{n+1}, p_{n+1})

S Only need the $s + \Delta s$ vector potential at the midpoint $s + \Delta s/2$

$$\mathcal{H} = \sqrt{(1+\delta)^2 - [p_x - a_x(x,y;s)]^2 - [p_y - a_y(x,y;s)]^2} - a_z(x,y;s)$$

- Tracking requires a numerical representation of the vector potential $A(x,y;s_n+\Delta s/2)$ and its derivatives
- We choose to represent the fields using the generalized gradient expansion
 - The fields **A** and **B** are expressed using a generalized power series in the transverse coordinates
 - The coefficients are located at discrete z (or s), and describe z-dependent "multipoles" and derivatives:

$$A_z = -xC_1(z) - (x^2-y^2)C_2(z) - (x^3-3xy^2)C_3(z) + \tfrac38(x^3+xy^2)C_1''(z) + \ldots + \text{Skew terms}$$
 Dipole Quadrupole Sextupole

Generalized gradients are an attractive field representation

• A. Dragt and colleagues developed the generalized gradient representation for accelerator tracking^[6,7,8]

$$A_z = -xC_1(z) - (x^2 - y^2)C_2(z) - (x^3 - 3xy^2)C_3(z) + \frac{3}{8}(x^3 + xy^2)C_1''(z) + \ldots + \text{Skew terms}$$

$$\begin{array}{c} \text{Dipole} \qquad \text{Quadrupole} \qquad \text{Sextupole} \\ B_r = \sum_{m=1}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m!(2\ell+m)}{4^{\ell} \ell!(\ell+m)!} r^{2\ell+m-1} \left\{ C_{m,s}^{[2\ell]}(z) \sin(m\phi) + C_{m,c}^{[2\ell]}(z) \cos(m\phi) \right\} + \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell} 2\ell}{4^{\ell} \ell!\ell!} r^{2\ell-1} C_{0,c}^{[2\ell]}(z) \\ B_\phi = \sum_{m=1}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m! \, m}{4^{\ell} \ell!(\ell+m)!} r^{2\ell+m-1} \left\{ C_{m,s}^{[2\ell]}(z) \cos(m\phi) - C_{m,c}^{[2\ell]}(z) \sin(m\phi) \right\} \quad B_z = \sum_{m=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m!}{4^{\ell} \ell!(\ell+m)!} r^{2\ell+m} \left\{ C_{m,s}^{[2\ell+1]}(z) \sin(m\phi) + C_{m,c}^{[2\ell+1]}(z) \cos(m\phi) \right\} \end{array}$$

^[8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, University of Maryland, College Park (2007).

^[6] M. Venturini and A. Dragt. "Accurate computation of transfer maps from magnetic field data," Nucl. Instrum. Methods Res. A 427, 387 (1999).

^[7] A. J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. Univ. of Maryland, College Park, 2020.

Generalized gradients are an attractive field representation

• A. Dragt and colleagues developed the generalized gradient representation for accelerator tracking^[6,7,8]

$$A_z = -xC_1(z) - (x^2 - y^2)C_2(z) - (x^3 - 3xy^2)C_3(z) + \frac{3}{8}(x^3 + xy^2)C_1''(z) + \ldots + \text{Skew terms}$$

$$\begin{array}{c} \text{Dipole} \qquad \text{Quadrupole} \qquad \text{Sextupole} \\ B_r = \sum_{m=1}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m!(2\ell+m)}{4^{\ell} \ell!(\ell+m)!} r^{2\ell+m-1} \left\{ C_{m,s}^{[2\ell]}(z) \sin(m\phi) + C_{m,c}^{[2\ell]}(z) \cos(m\phi) \right\} + \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell} 2\ell}{4^{\ell} \ell!\ell!} r^{2\ell-1} C_{0,c}^{[2\ell]}(z) \\ B_\phi = \sum_{m=1}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m! \, m}{4^{\ell} \ell!(\ell+m)!} r^{2\ell+m-1} \left\{ C_{m,s}^{[2\ell]}(z) \cos(m\phi) - C_{m,c}^{[2\ell]}(z) \sin(m\phi) \right\} \quad B_z = \sum_{m=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m!}{4^{\ell} \ell!(\ell+m)!} r^{2\ell+m} \left\{ C_{m,s}^{[2\ell+1]}(z) \sin(m\phi) + C_{m,c}^{[2\ell+1]}(z) \cos(m\phi) \right\} \end{aligned}$$

- The generalized gradient representation enjoys a number of nice properties
 - Provides an analytic expression of A on planes of constant $z \to \text{Symplectic tracking is possible}$
 - The equation $\nabla \cdot \mathbf{B} = 0$, while $\nabla \times \mathbf{B} = 0$ to a high order in the particle coordinates on planes of constant z.

^[8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, University of Maryland, College Park (2007).

^[6] M. Venturini and A. Dragt. "Accurate computation of transfer maps from magnetic field data," Nucl. Instrum. Methods Res. A 427, 387 (1999).

^[7] A. J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. Univ. of Maryland, College Park, 2020.

Generalized gradients are an attractive field representation

• A. Dragt and colleagues developed the generalized gradient representation for accelerator tracking^[6,7,8]

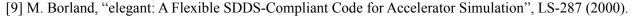
$$A_z = -xC_1(z) - (x^2 - y^2)C_2(z) - (x^3 - 3xy^2)C_3(z) + \frac{3}{8}(x^3 + xy^2)C_1''(z) + \dots + \text{Skew terms}$$

$$\begin{array}{c} \text{Dipole} \qquad \text{Quadrupole} \qquad \text{Sextupole} \\ B_r = \sum_{m=1}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m!(2\ell+m)}{4^{\ell}\ell!(\ell+m)!} r^{2\ell+m-1} \left\{ C_{m,s}^{[2\ell]}(z) \sin(m\phi) + C_{m,c}^{[2\ell]}(z) \cos(m\phi) \right\} + \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell} 2\ell}{4^{\ell}\ell!\ell!} r^{2\ell-1} C_{0,c}^{[2\ell]}(z) \\ B_\phi = \sum_{m=1}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m! \, m}{4^{\ell}\ell!(\ell+m)!} r^{2\ell+m-1} \left\{ C_{m,s}^{[2\ell]}(z) \cos(m\phi) - C_{m,c}^{[2\ell]}(z) \sin(m\phi) \right\} \quad B_z = \sum_{m=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} m!}{4^{\ell}\ell!(\ell+m)!} r^{2\ell+m} \left\{ C_{m,s}^{[2\ell+1]}(z) \sin(m\phi) + C_{m,c}^{[2\ell+1]}(z) \cos(m\phi) \right\} \end{array}$$

- The generalized gradient representation enjoys a number of nice properties
 - Provides an analytic expression of A on planes of constant $z \to \text{Symplectic tracking is possible}$
 - The equation $\nabla \cdot \mathbf{B} = 0$, while $\nabla \times \mathbf{B} = 0$ to a high order in the particle coordinates on planes of constant z.
- The representation can be computed from measured or simulated magnetic field data on a boundary
 - Orthogonal functions define the solution bases for circular, elliptical, and rectangular cylinders
 - Solutions typically converge quite rapidly
 - Fitting from boundary values tends to smooth any noise/errors in the data: difference between the 'real' and 'generalized gradient' field is a harmonic function whose maximum is on the boundary
 - [6] M. Venturini and A. Dragt. "Accurate computation of transfer maps from magnetic field data," Nucl. Instrum. Methods Res. A 427, 387 (1999).
 - [7] A. J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. Univ. of Maryland, College Park, 2020.
 - [8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, University of Maryland, College Park (2007).

Tracking was added to elegant^[9] using the BGGEXP element

- BGGEXP integrates particles through a field described by generalized gradients
 - Symplectic integrator using implicit midpoint method
 - Evaluates the vector potential A and updates the coordinates to locations between the data
 - Requires iteration for convergence
 - Nonsymplectic predictor-corrector
 - Explicit, only needs *B*-field components → over 3 times faster
- Tracking through quadrupoles, sextupoles, wigglers, etc. is relatively straightforward

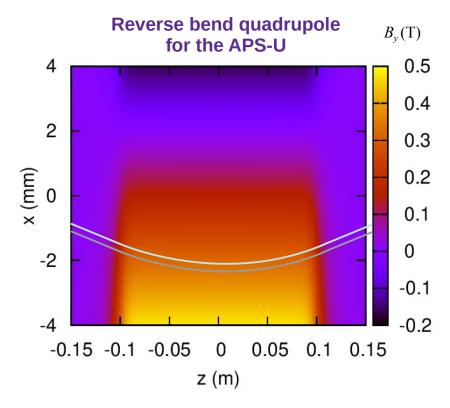


^[10] D. Sagan, E. Hamwi, and P Nishikawa. "Generalized Gradient field description using the Bmad and PRC Toolkits," IPAC23, WEPL015 (2023), pp. 3136.

^[11] W. Lin, D. Sagan, E. Hamwi, G. Hoffstaetter, and V. Schoefer, "Generalized gradient tracking in the Siberian snakes of the AGS and RHIC," IPAC23, WEPA064 (2023), pp. 2793

Tracking was added to elegant^[9] using the BGGEXP element

- BGGEXP integrates particles through a field described by generalized gradients
 - Symplectic integrator using implicit midpoint method
 - Evaluates the vector potential A and updates the coordinates to locations between the data
 - Requires iteration for convergence
 - Nonsymplectic predictor-corrector
 - Explicit, only needs *B*-field components → over 3 times faster
- Tracking through quadrupoles, sextupoles, wigglers, etc. is relatively straightforward
- Tracking through dipoles requires also defining input and out planes, and using field scaling parameters to ensure correct bending angle
- Tracking through gradient dipoles requires careful setup
 - Small changes in initial x will change the integrated bending field
 - Fine-tuning of the strength and/or x-offset is typically needed
- Similar capabilities have been added to Bmad^[10,11]



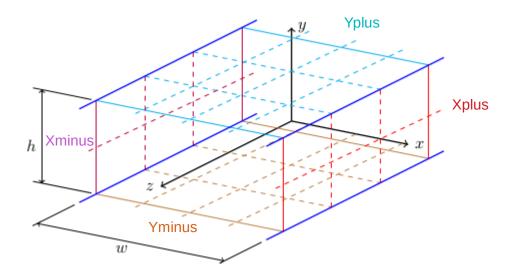
^[11] W. Lin, D. Sagan, E. Hamwi, G. Hoffstaetter, and V. Schoefer, "Generalized gradient tracking in the Siberian snakes of the AGS and RHIC," IPAC23, WEPA064 (2023), pp. 2793

^[9] M. Borland, "elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation", LS-287 (2000).

^[10] D. Sagan, E. Hamwi, and P Nishikawa. "Generalized Gradient field description using the Bmad and PRC Toolkits," IPAC23, WEPL015 (2023), pp. 3136.

Companion programs^[12] use field data to compute the generalized gradient expansion for elegant tracking

- computeCBGGE uses the field data on the surface of a circular cylinder using equations from^[6]
- computeRBGGE uses the field data on the surface of a rectangular cylinder using equations from^[8]

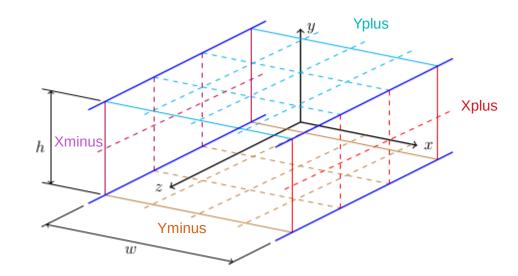


Normal field components on a rectangular cylinder define inputs for computeRBGGE

[12] M. Borland, R. R. Lindberg, R. Soliday, and A. Xiao, "Tools for Use of Generalized Gradient Expansions in Accelerator Simulations," in Proc. IPAC'21, pp. 253 [6] M. Venturini and A. Dragt. "Accurate computation of transfer maps from magnetic field data," Nucl. Instrum. Methods Res. A **427**, 387 (1999). [8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, University of Maryland, College Park (2007).

Companion programs^[12] use field data to compute the generalized gradient expansion for elegant tracking

- computeCBGGE uses the field data on the surface of a circular cylinder using equations from^[6]
- computeRBGGE uses the field data on the surface of a rectangular cylinder using equations from^[8]
- Both programs have several common features
 - 1. Choice of computing the normal, skew, or both field components
 - 2. Automated routine that finds the number of multipoles and derivatives to best match data
 - 3. Parallel computing using OpenMP
 - 4. Output files in a format suitable for the BGGEXP tracking element in elegant^[9]



Normal field components on a rectangular cylinder define inputs for computeRBGGE

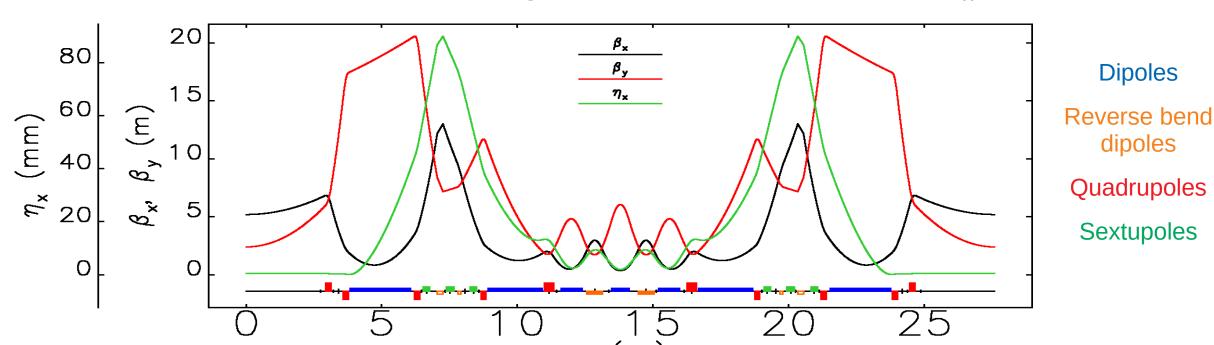
^[9] M. Borland, "elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation", LS-287 (2000).

^[12] M. Borland, R. R. Lindberg, R. Soliday, and A. Xiao, "Tools for Use of Generalized Gradient Expansions in Accelerator Simulations," in Proc. IPAC'21, pp. 253

^[6] M. Venturini and A. Dragt. "Accurate computation of transfer maps from magnetic field data," Nucl. Instrum. Methods Res. A 427, 387 (1999).

^[8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, University of Maryland, College Park (2007).

Application to APS-U's hybrid 7⁺BA lattice^[13]; ε_x = 42 pm^[14]

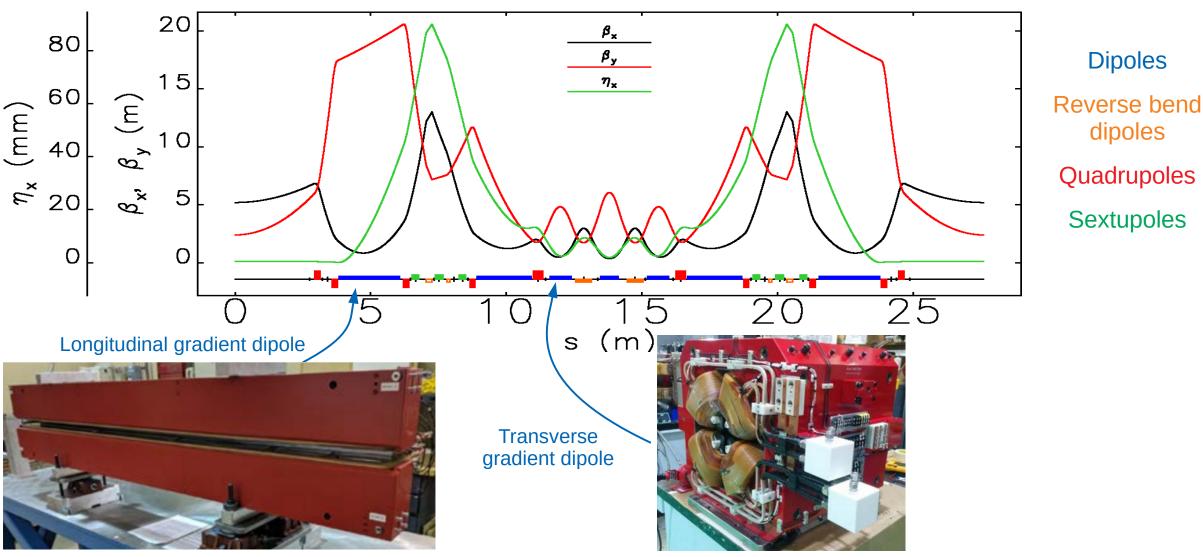


[13] L. Farvacque et al. "A Low-Emittance Lattice for the ESRF," IPAC 2013, pp 79; L. Farvacque, et al., "ESRF-EBS Design Report," ed. by D. Einfeld and P. Raimondi (2018).

S

[14] M. Borland, Y. Sun, V. Sajaev, R. R. Lindberg, and T. Berenc. "Lower Emittance Lattice for the Advanced Photon Source Upgrade Using Reverse Bending Magnets," in NAPAC 2016, pp. 877

Application to APS-U's hybrid 7⁺BA lattice^[13]; ε_x = 42 pm^[14]



[13] L. Farvacque et al. "A Low-Emittance Lattice for the ESRF," IPAC 2013, pp 79; L. Farvacque, et al., "ESRF-EBS Design Report," ed. by D. Einfeld and P. Raimondi (2018).

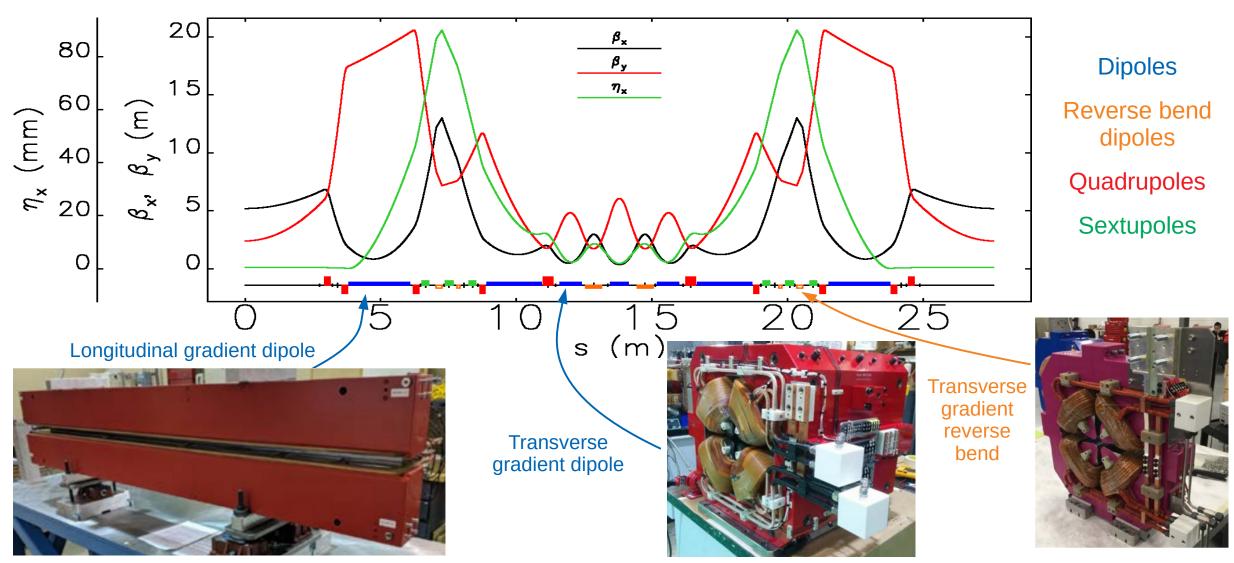
[14] M. Borland, Y. Sun, V. Sajaev, R. R. Lindberg, and T. Berenc, "Lower Emittance Lattice for the Advanced Photon Source Upgrade Using Reverse Bending Magnets," in NAPAC 2016, pp. 877

Dipoles

dipoles

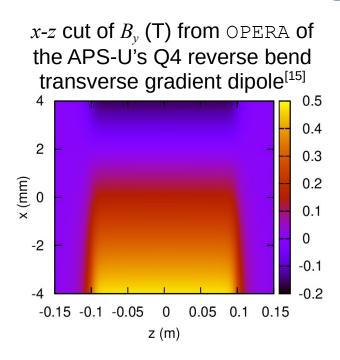
Sextupoles

Application to APS-U's hybrid 7⁺BA lattice^[13]; ε_x = 42 pm^[14]

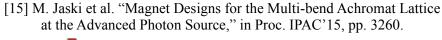


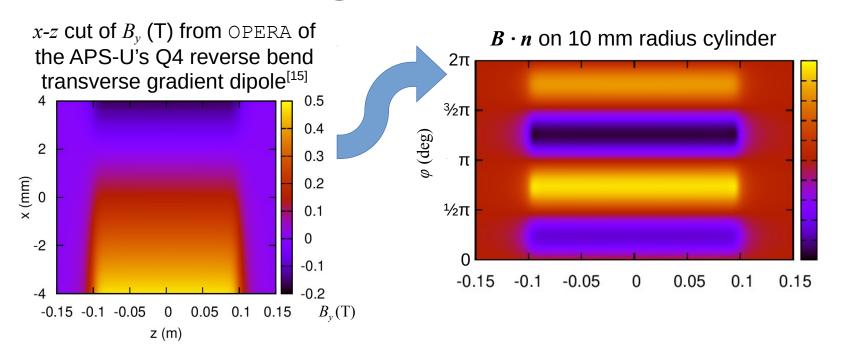
[13] L. Farvacque et al. "A Low-Emittance Lattice for the ESRF," IPAC 2013, pp 79; L. Farvacque, et al., "ESRF-EBS Design Report," ed. by D. Einfeld and P. Raimondi (2018).

[14] M. Borland, Y. Sun, V. Sajaev, R. R. Lindberg, and T. Berenc. "Lower Emittance Lattice for the Advanced Photon Source Upgrade Using Reverse Bending Magnets," in NAPAC 2016, pp. 877

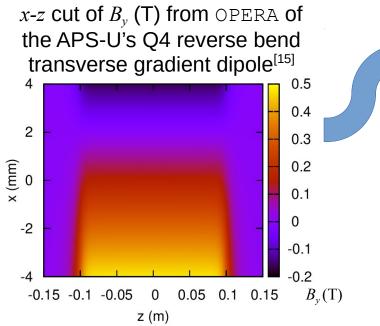


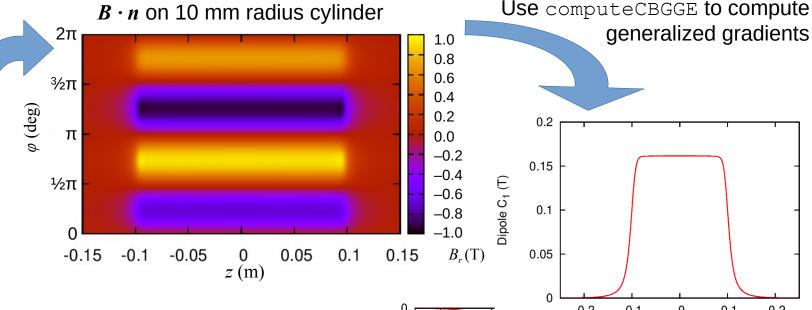
1. Start with simulation data

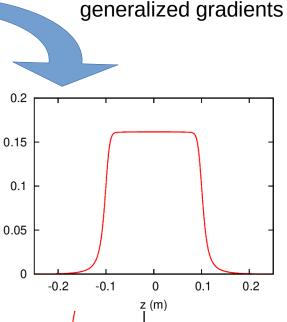




- 1. Start with simulation data
- 2. Evaluate normal component of **B** on a bounding surface



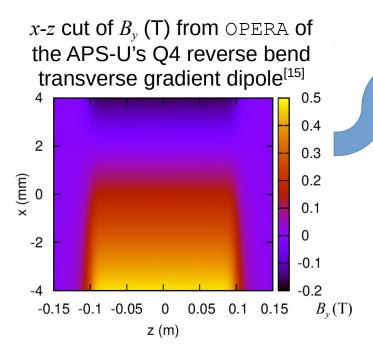


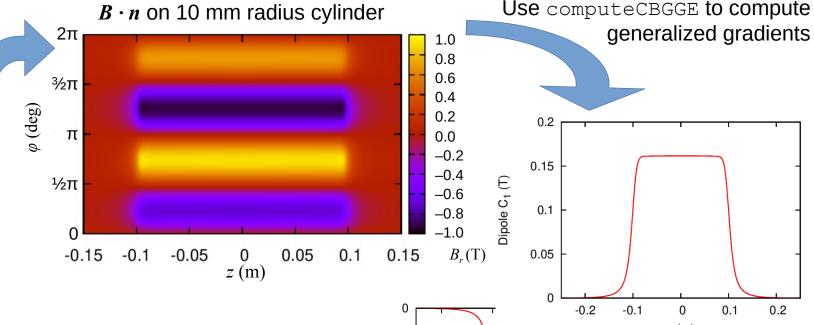


- Start with simulation data
- Evaluate normal component of **B** on a bounding surface
- Compute and retain generalized gradients that minimize $\Delta \mathbf{B}$ on the boundary

[15] M. Jaski et al. "Magnet Designs for the Multi-bend Achromat Lattice at the Advanced Photon Source," in Proc. IPAC'15, pp. 3260.

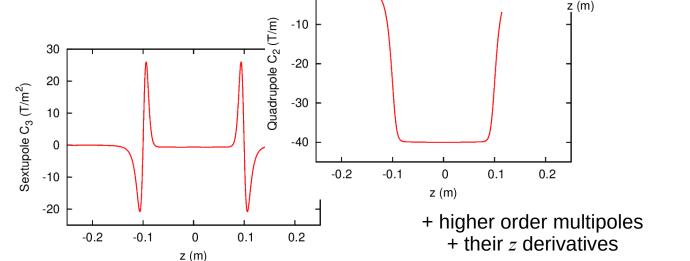
Quadrupole C₂ (T/m) -10 -20 20 Sextupole $C_3 (T/m^2)$ -30 -40 -0.2 -0.1 0.1 0.2 -10 z (m) -20 + higher order multipoles -0.2 -0.1 0.1 0.2 + their z derivatives z (m)





- Start with simulation data
- Evaluate normal component of **B** on a bounding surface
- Compute and retain generalized gradients that minimize $\Delta \mathbf{B}$ on the boundary
- Use in tracking

[15] M. Jaski et al. "Magnet Designs for the Multi-bend Achromat Lattice at the Advanced Photon Source," in Proc. IPAC'15, pp. 3260.

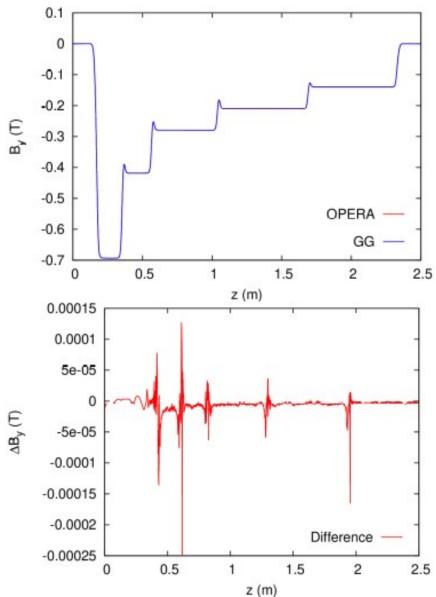


0.2

0.1

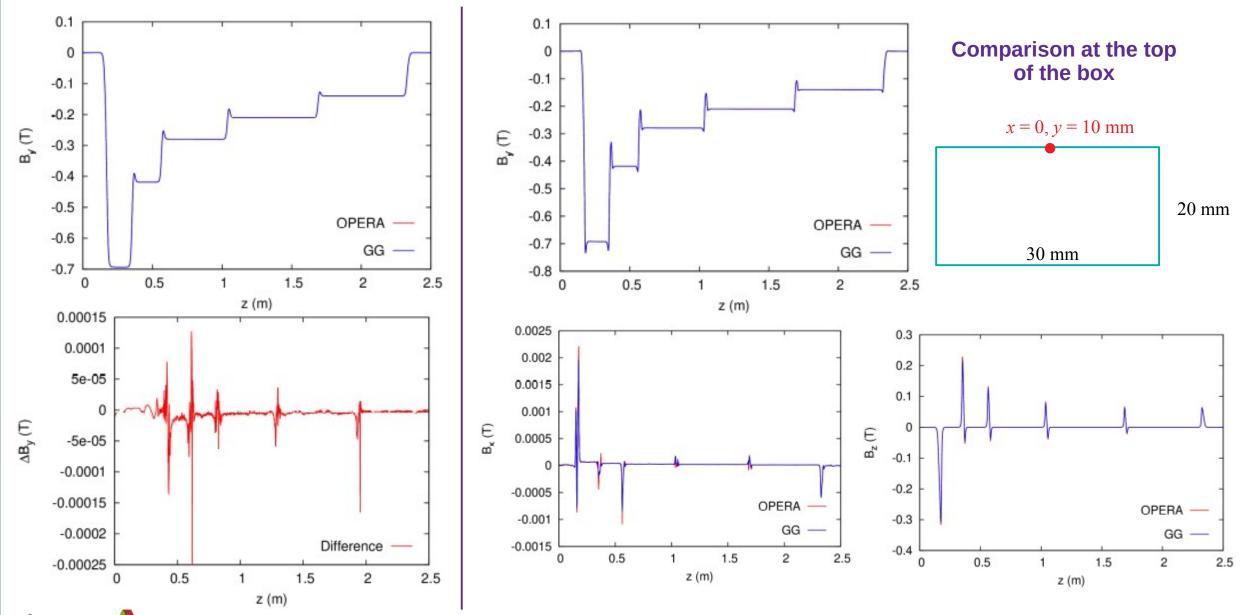
0

Model of the longitudinal gradient dipole looks good



Ryan Lindberg -- Symplectic tracking through arbitrary magnetic fields -- I.FAST Low Emittance Rings 2024

Model of the longitudinal gradient dipole looks good



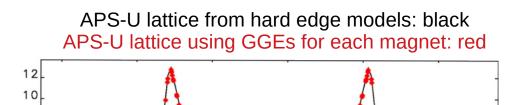
All-GGE lattice of APS-U tuned to match design^[16]

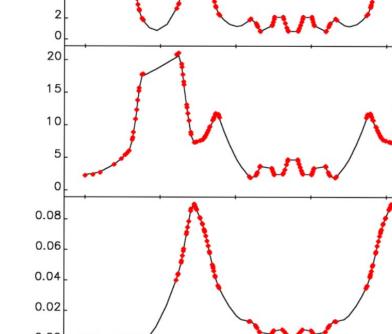
- We used OPERA data from M. Jaski to assemble an all-GGE APS-U lattice model
- Matching of models requires two steps
 - Tune each GGE element to match the 2nd order properties of each magnet
 - Apply global tuning to control the orbit and reproduce the linear optics and chromaticity

[16] R.Lindberg and M. Borland. "Storage ring tracking using generalized gradient representation of full magnetic field maps," in Proc. of the 2022 NAPAC, pp. 542.

All-GGE lattice of APS-U tuned to match design^[16]

- We used OPERA data from M. Jaski to assemble an all-GGE APS-U lattice model
- Matching of models requires two steps
 - Tune each GGE element to match the 2nd order properties of each magnet
 - Apply global tuning to control the orbit and reproduce the linear optics and chromaticity
- This is laborious, but works well
 - Relies on the numerical computation of 2nd-order transport matrices^[17]
 - Optimization is only practical because of parallelization^[18]
- [16] R.Lindberg and M. Borland. "Storage ring tracking using generalized gradient representation of full magnetic field maps," in Proc. of the 2022 NAPAC, pp. 542.
- [17] M. Borland, "A High-Brightness thermionic microwave electron gun," PhD thesis, Stanford University, SLAC-402, (1991).
- [18] Y. Wang and M. Borland, "Pelegant: A Parallel Accelerator Simulation Code for Electron Generation and Tracking," AIP Conf. Proc., 877, 241 (2006).

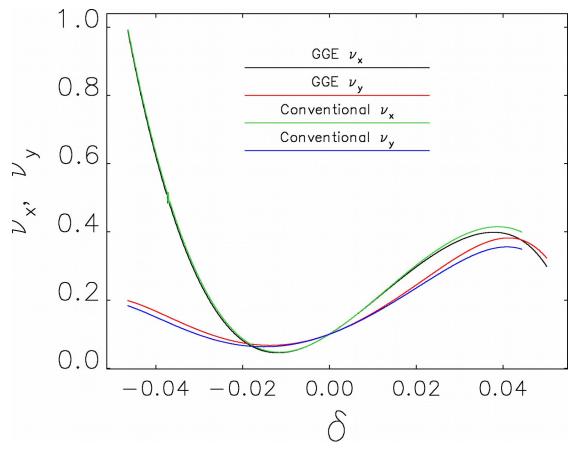




20

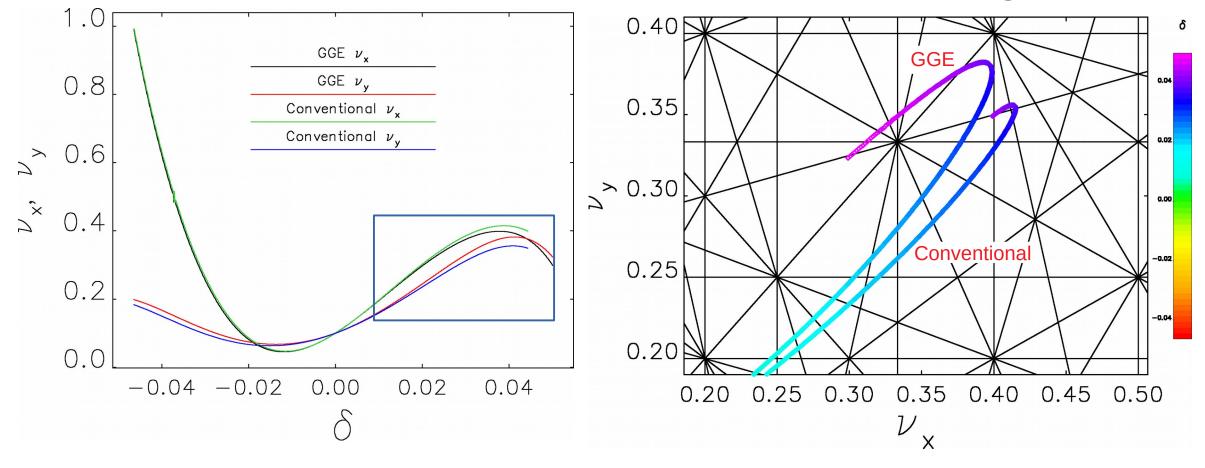
s (m)

Chromatic tune footprint matches fairly well



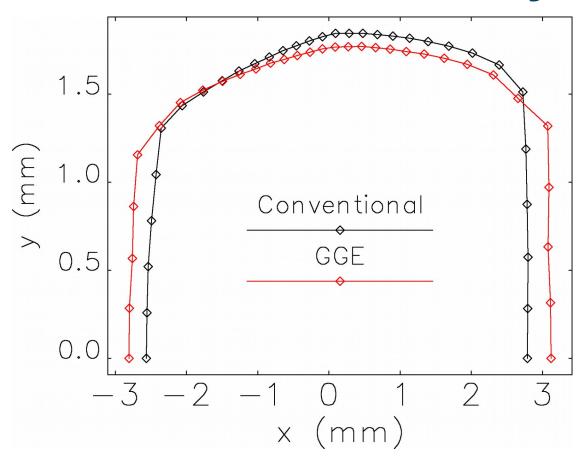
- The tune's dependence on energy is quite close over the entire range
- GGE "tuning" only matched linear optics and chromaticities
- GGE tracking takes about 280 times longer

Chromatic tune footprint matches fairly well



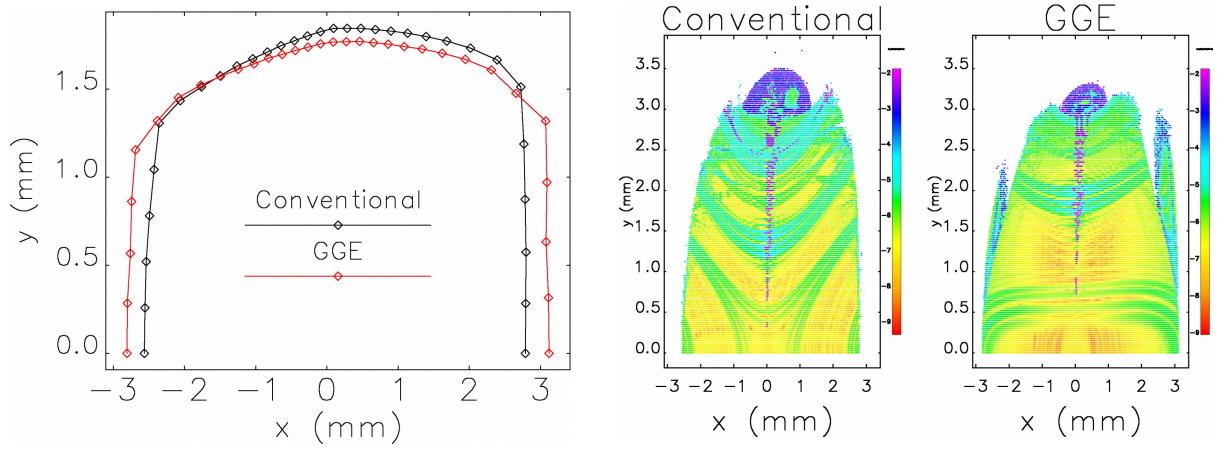
- The tune's dependence on energy is quite close over the entire range
- GGE "tuning" only matched linear optics and chromaticities
- GGE tracking takes about 280 times longer

Nonlinear dynamics are similar



The predictions for the dynamic acceptance agree reasonably well

Nonlinear dynamics are similar



- The predictions for the dynamic acceptance agree reasonably well
- The frequency maps are vaguely similar
 - Same overall shape, but clearly different details
 - We are investigating possible sources of discrepancy

The magnitude of the GGE tuning indicates that some hard-edge models could be improved

 After tuning the GGE model, the straight magnets have integrated strengths very close to design values

Comparison of integrated strength

Magnet Name	Design to GGE ratio	Design length (m)	GGE length (m)
Q1	1.0107	0.20495	0.20492
$\mathrm{Q}2$	1.0002	0.17918	0.17916
Q3	0.9979	0.18009	0.18005
Q6	1.0010	0.18010	0.17974
Q7	0.9967	0.35655	0.35655
S01A:S1	0.9924	0.18050	0.18046
S01A:S2	0.9892	0.21075	0.21056
S01A:S3	0.9924	0.18050	0.18046
S01B:S1	0.9924	0.18050	0.18046
S01B:S2	0.9892	0.21075	0.21056
S01B:S3	0.9924	0.18050	0.18046
S02A:S1	0.9924	0.18050	0.18046
S02A:S2	0.9892	0.21075	0.21056
S02A:S3	0.9924	0.18050	0.18046
S02B:S1	0.9924	0.18050	0.18046
S02B:S2	0.9892	0.21075	0.21056
S02B:S3	0.9924	0.18050	0.18046

The magnitude of the GGE tuning indicates that some hard-edge models could be improved

- After tuning the GGE model, the straight magnets have integrated strengths very close to design values
- Matching the transverse gradient dipoles require changing the GGE dipole and quadrupole strengths by a few percent

Tuning parameters for transverse gradient dipoles

Element Name	Dipole Factor	Quadrupole Factor	DX (mm)
Q4 Q5 M3	$ \begin{array}{c} 1.0171 \\ 0.9681 \\ 0.9842 \end{array} $	$ \begin{array}{c} 1.0028 \\ 0.9948 \\ 1.0017 \end{array} $	-0.024 0.009 0.012
Q8 $M4$	$ \begin{array}{c} 0.9842 \\ 1.0138 \\ 0.9833 \end{array} $	1.0017 1.0118 1.0117	-0.012 -0.021 -0.077

Comparison of integrated strength

Magnet Name	Design to GGE ratio	Design length (m)	GGE length (m)
Q1	1.0107	0.20495	0.20492
$\mathrm{Q}2$	1.0002	0.17918	0.17916
Q3	0.9979	0.18009	0.18005
Q6	1.0010	0.18010	0.17974
Q7	0.9967	0.35655	0.35655
S01A:S1	0.9924	0.18050	0.18046
S01A:S2	0.9892	0.21075	0.21056
S01A:S3	0.9924	0.18050	0.18046
S01B:S1	0.9924	0.18050	0.18046
S01B:S2	0.9892	0.21075	0.21056
S01B:S3	0.9924	0.18050	0.18046
S02A:S1	0.9924	0.18050	0.18046
S02A:S2	0.9892	0.21075	0.21056
S02A:S3	0.9924	0.18050	0.18046
S02B:S1	0.9924	0.18050	0.18046
S02B:S2	0.9892	0.21075	0.21056
S02B:S3	0.9924	0.18050	0.18046

The magnitude of the GGE tuning indicates that some hard-edge models could be improved

- After tuning the GGE model, the straight magnets have integrated strengths very close to design values
- Matching the transverse gradient dipoles require changing the GGE dipole and quadrupole strengths by a few percent
- Matching the longitudinal gradient dipoles requires small strength adjustments, but large (~2 mm) longitudinal displacements.
 - Hard edge model of longitudinal gradient dipole has long been troublesome
 - Could we improve matters with better fringe field modeling?

Tuning	parameters	for	transverse	gradient	dipoles
	paratification		11 011 10 1 01 00	gradioni	aipoioo

Element	Dipole	Quadrupole	DX
Name	Factor	Factor	(mm)
Q4	1.0171	1.0028 0.9948 1.0017 1.0118 1.0117	-0.024
Q5	0.9681		0.009
M3	0.9842		0.012
Q8	1.0138		-0.021
M4	0.9833		-0.077

Tuning parameters for longitudinal gradient dipoles

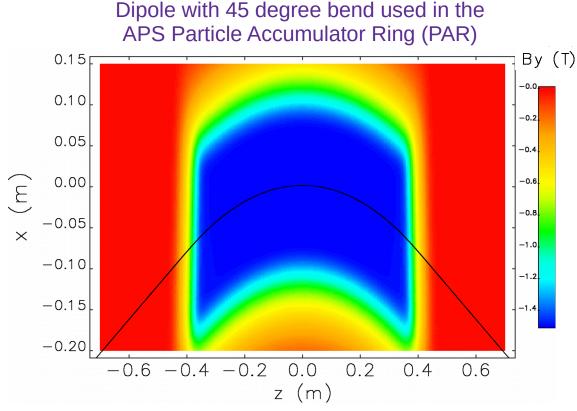
		BORRER THE PROPERTY OF STATE O
Element Name	Dipole Factor	DZ (mm)
AM1	0.9999	-1.376
AM2	0.9987	1.999
BM2	0.9987	-1.999
BM1	0.9999	1.376

Comparison of integrated strength

William a Walle a Life -			
Magnet Name	Design to GGE ratio	Design length (m)	GGE length (m
Q1	1.0107	0.20495	0.20492
$\mathrm{Q}2$	1.0002	0.17918	0.17916
Q3	0.9979	0.18009	0.18005
Q6	1.0010	0.18010	0.17974
Q7	0.9967	0.35655	0.35655
S01A:S1	0.9924	0.18050	0.18046
S01A:S2	0.9892	0.21075	0.21056
S01A:S3	0.9924	0.18050	0.18046
S01B:S1	0.9924	0.18050	0.18046
S01B:S2	0.9892	0.21075	0.21056
S01B:S3	0.9924	0.18050	0.18046
S02A:S1	0.9924	0.18050	0.18046
S02A:S2	0.9892	0.21075	0.21056
S02A:S3	0.9924	0.18050	0.18046
S02B:S1	0.9924	0.18050	0.18046
S02B:S2	0.9892	0.21075	0.21056
S02B:S3	0.9924	0.18050	0.18046

Challenges for our choice of symplectic tracking

- The techniques described previously work well for magnets whose reference orbit is close to the z-axis (straight magnets and dipoles with small bending angles: APS-U dipoles have bending angle < 30 mrad)
- The representation of the magnetic field is less reliable for large bending angles (large sagitta)
 - Transverse Taylor series is about the z-axis, and may converge poorly at large x
 - Wide magnets with disparate length scales in x and y are particularly problematic

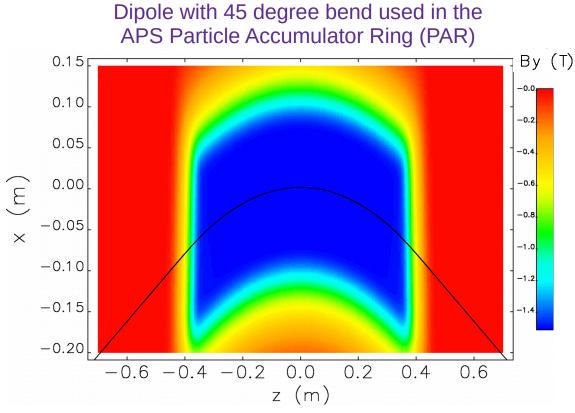


Challenges for our choice of symplectic tracking

- The techniques described previously work well for magnets whose reference orbit is close to the z-axis (straight magnets and dipoles with small bending angles: APS-U dipoles have bending angle < 30 mrad)
- The representation of the magnetic field is less reliable for large bending angles (large sagitta)
 - Transverse Taylor series is about the z-axis, and may converge poorly at large x
 - Wide magnets with disparate length scales in x and y are particularly problematic
- As an extreme example, consider an infinitely wide whose magnetic potential $\psi = \sum_{p=0}^{\infty} \frac{(-1)^p y^{2p+1}}{(2p+1)!} C_1^{[2p]}(z)$
- We get this using our circular generalized gradient expansion if the coefficients satisfy

$$p \ge 1$$
: $C_{2p+1}(z) \to \frac{C_1^{[2p]}(z)}{4^p(2p+1)!}$, $C_{2p}(z) \to 0$

 Hence, careful cancellation of high-order terms is required to properly model the dipole at large sagitta

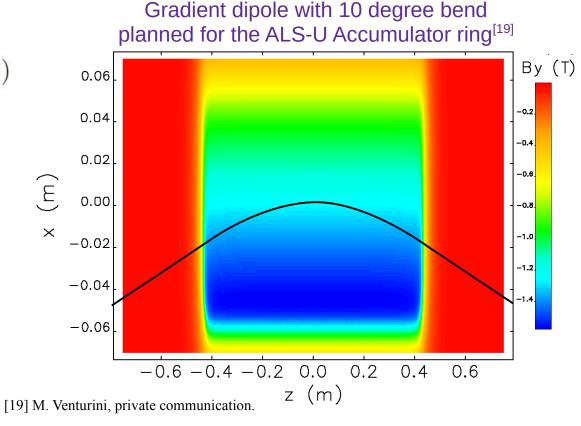


Challenges for our choice of symplectic tracking

- The techniques described previously work well for magnets whose reference orbit is close to the z-axis (straight magnets and dipoles with small bending angles: APS-U dipoles have bending angle < 30 mrad)
- The representation of the magnetic field is less reliable for large bending angles (large sagitta)
 - Transverse Taylor series is about the z-axis, and may converge poorly at large x
 - Wide magnets with disparate length scales in x and y are particularly problematic
- As an extreme example, consider an infinitely wide whose magnetic potential $\psi = \sum_{p=0}^{\infty} \frac{(-1)^p y^{2p+1}}{(2p+1)!} C_1^{[2p]}(z)$
- We get this using our circular generalized gradient expansion if the coefficients satisfy

$$p \ge 1$$
: $C_{2p+1}(z) \to \frac{C_1^{[2p]}(z)}{4^p(2p+1)!}$, $C_{2p}(z) \to 0$

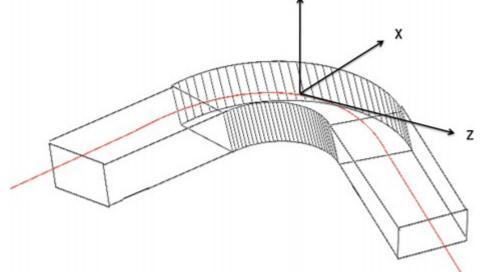
- Hence, careful cancellation of high-order terms is required to properly model the dipole at large sagitta
 - Increased sensitivity to numerical errors
 - Similar "feed-down" effects can plague multipole error terms in straight-pole magnets



Boundary techniques of generalized gradients can be extended with "bent-box" method^[8]

$$\begin{aligned} & \textbf{Normal component of B} & \textbf{Magnetic potential} \\ & \boldsymbol{A}(\boldsymbol{r}) = \int\limits_{\partial V} dS' \; \left\{ [\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{B}(\boldsymbol{r}')] \boldsymbol{G}^n[\boldsymbol{r}'; \boldsymbol{r}, \hat{\boldsymbol{m}}(\boldsymbol{r}')] + \psi(\boldsymbol{r}') \boldsymbol{G}^t[\boldsymbol{r}; \boldsymbol{r}', \hat{\boldsymbol{n}}(\boldsymbol{r}')] \right\} \\ & \underbrace{ \begin{array}{c} \boldsymbol{m}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}') \\ 4\pi \, |\boldsymbol{r} - \boldsymbol{r}'| - \hat{\boldsymbol{m}}(\boldsymbol{r}') \cdot (\boldsymbol{r} - \boldsymbol{r}') \end{array}}_{\boldsymbol{4}\pi \; |\boldsymbol{r} - \boldsymbol{r}'|^3} \\ \end{aligned} } \underbrace{ \begin{array}{c} \hat{\boldsymbol{n}}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}') \\ 4\pi \, |\boldsymbol{r} - \boldsymbol{r}'|^3 \end{aligned}}_{\boldsymbol{4}\pi \; |\boldsymbol{r} - \boldsymbol{r}'|^3}$$

 First envisioned as employing a bounding surface that is bent to follow the reference trajectory and keep it along the center

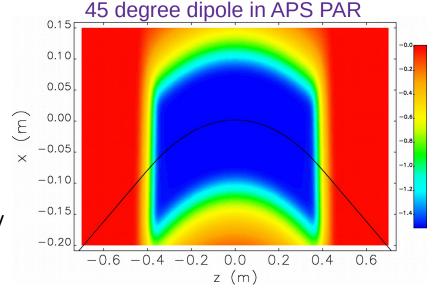


[8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, Univ. of Maryland, College Park (2007).

• Boundary techniques of generalized gradients can be extended with "bent-box" method^[8]

$$\begin{aligned} & \textbf{Normal component of B} & \textbf{Magnetic potential} \\ & \boldsymbol{A}(\boldsymbol{r}) = \int\limits_{\partial V} dS' \; \left\{ [\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{B}(\boldsymbol{r}')] \boldsymbol{G}^n[\boldsymbol{r}'; \boldsymbol{r}, \hat{\boldsymbol{m}}(\boldsymbol{r}')] + \psi(\boldsymbol{r}') \boldsymbol{G}^t[\boldsymbol{r}; \boldsymbol{r}', \hat{\boldsymbol{n}}(\boldsymbol{r}')] \right\} \\ & \frac{\boldsymbol{m}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{4\pi \; |\boldsymbol{r} - \boldsymbol{r}'| - \hat{\boldsymbol{m}}(\boldsymbol{r}') \cdot (\boldsymbol{r} - \boldsymbol{r}')} & \frac{\hat{\boldsymbol{n}}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{4\pi \; |\boldsymbol{r} - \boldsymbol{r}'|^3} \end{aligned}$$

- First envisioned as employing a bounding surface that is bent to follow the reference trajectory and keep it along the center
- Works equally well with a curved orbit enclosed by a rectangular boundary

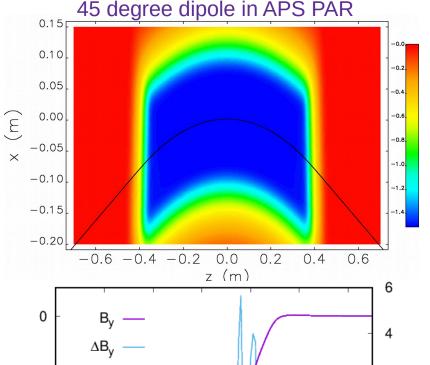


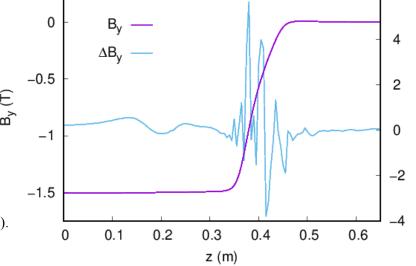
[8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, Univ. of Maryland, College Park (2007).

• Boundary techniques of generalized gradients can be extended with "bent-box" method^[8]

Normal component of B Magnetic potential $\boldsymbol{A}(\boldsymbol{r}) = \int\limits_{\partial V} dS' \; \left\{ [\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{B}(\boldsymbol{r}')] \boldsymbol{G}^n[\boldsymbol{r}'; \boldsymbol{r}, \hat{\boldsymbol{m}}(\boldsymbol{r}')] + \psi(\boldsymbol{r}') \boldsymbol{G}^t[\boldsymbol{r}; \boldsymbol{r}', \hat{\boldsymbol{n}}(\boldsymbol{r}')] \right\}$ $\frac{\boldsymbol{m}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{4\pi \; |\boldsymbol{r} - \boldsymbol{r}'| - \hat{\boldsymbol{m}}(\boldsymbol{r}') \cdot (\boldsymbol{r} - \boldsymbol{r}')} \qquad \frac{\hat{\boldsymbol{n}}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{4\pi \; |\boldsymbol{r} - \boldsymbol{r}'|^3}$

- First envisioned as employing a bounding surface that is bent to follow the reference trajectory and keep it along the center
- Works equally well with a curved orbit enclosed by a rectangular boundary
- Analytic expressions for A and its derviatives are obtained by Taylor expanding about the reference trajectory
- While conceptually the same as the previous generalized gradient method, its numerical implementation is different





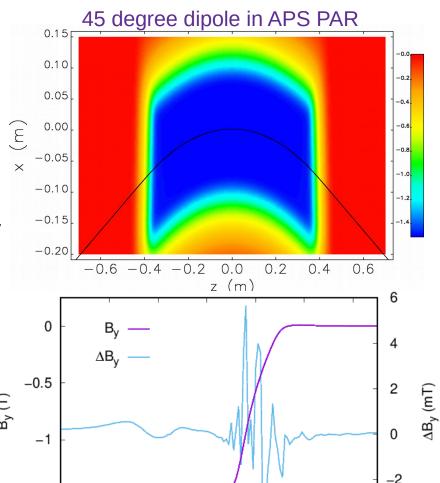
[8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, Univ. of Maryland, College Park (2007).

• Boundary techniques of generalized gradients can be extended with "bent-box" method^[8]

Normal component of B Magnetic potential $\boldsymbol{A}(\boldsymbol{r}) = \int\limits_{\partial V} dS' \; \left\{ [\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{B}(\boldsymbol{r}')] \boldsymbol{G}^n[\boldsymbol{r}'; \boldsymbol{r}, \hat{\boldsymbol{m}}(\boldsymbol{r}')] + \psi(\boldsymbol{r}') \boldsymbol{G}^t[\boldsymbol{r}; \boldsymbol{r}', \hat{\boldsymbol{n}}(\boldsymbol{r}')] \right\}$ $\frac{\boldsymbol{m}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{4\pi \; |\boldsymbol{r} - \boldsymbol{r}'| - \hat{\boldsymbol{m}}(\boldsymbol{r}') \cdot (\boldsymbol{r} - \boldsymbol{r}')} \qquad \frac{\hat{\boldsymbol{n}}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{4\pi \; |\boldsymbol{r} - \boldsymbol{r}'|^3}$

- First envisioned as employing a bounding surface that is bent to follow the reference trajectory and keep it along the center
- Works equally well with a curved orbit enclosed by a rectangular boundary
- Analytic expressions for A and its derviatives are obtained by Taylor expanding about the reference trajectory
- While conceptually the same as the previous generalized gradient method, its numerical implementation is different
- It will be interesting to compare this method of symplectic tracking with that proposed in^[5]
 - Expands the Hamiltonian in both coordinates and moments
 - Uses different formulation of B-field in toroidal coordinates

[8] C. E. Mitchell. "Calculation of Realistic charged-particle transfer maps." PhD thesis, Univ. of Maryland, College Park (2007). [5] A. Wolski and A.T. Herrod, "Explicit symplectic integrator...with curved reference trajectory," PRST-AB **21**, 084001 (2018).



0.4

z (m)

0.5

0.6

0.2

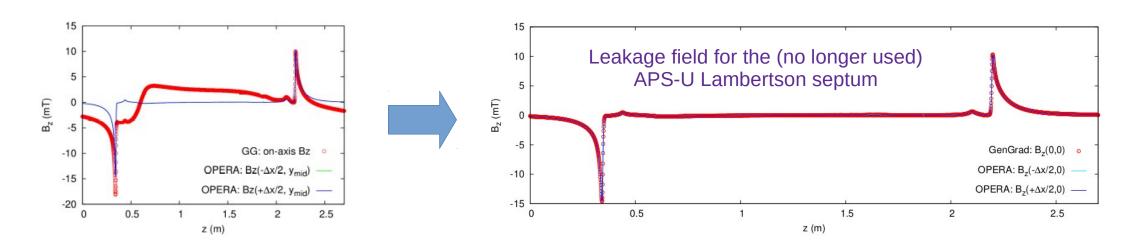
Summary and future directions

- The generalized gradient representation is appealing for accelerator modeling
 - Field is represented as a Taylor series in the transverse coordinates
 - Field is divergence free and suitable for symplectic tracking
- Generalized gradients can be accurately computed from magnetic field data
 - Data can be from simulations or measurements
 - Data can be on rectangular prisms or circular cylinders
- We provide convenient tools to compute the generalized gradients for elegant particle tracking
- We have used generalized gradients for a variety of APS-U modeling tasks
 - Evaluation of effects of leakage fields of a Lambertson septum
 - Verification of nonlinear dynamics and emittance
 - Validation of improved hard edge and fringe models for Cartesian gradient dipoles
- Plans include expanding tools to include curved surfaces
 - Generalized gradient models of dipoles with large bending angles
 - Fringe field modeling for transverse gradient sector bends

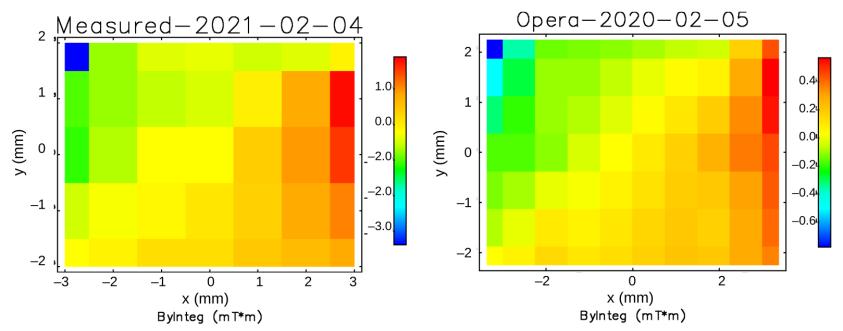
Extra slides

Magnetic boundary data define the generalized gradients

- Published computational techniques use the normal component of B on a generalized cylinder^[5,6,7]
 - Orthogonal functions define bases in circular, elliptical, and rectangular cylinder
 - Solutions converge rapidly and also smooth any noise/errors in the boundary data
 - GG-"true solution" is a harmonic function whose maximum must lie on the boundary
- If the field has $B_z \neq 0$ on-axis (solenoidal component), we found that B_z on the boundary is also needed



Application to modeling the septum leakage field



- Prototype APS-U Lambertson septum magnet^[18] was built by FNAL and measured in May 2021
- Measurements by M. Kasa, *et al.* showed similar field map profiles to simulations, but with integrated leakage fields ~4 times larger than simulation predicted (error in construction)
- Previous studies indicated that a leakage field of this size could reduce injection efficiency and lifetime^[19]
- We studied this issue using a generalized gradient field model derived from measurements

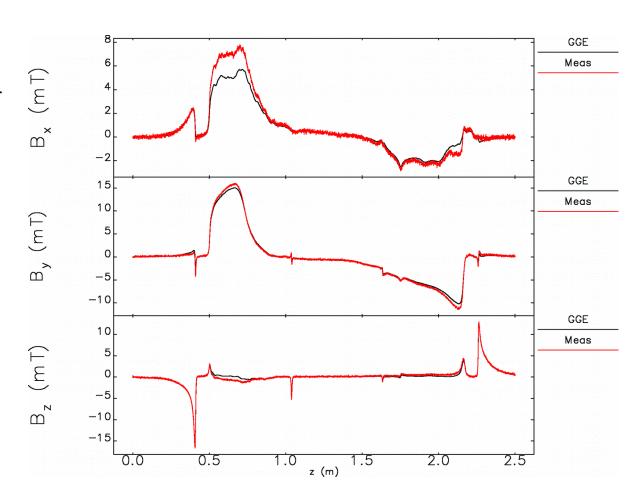
[18] M. Abliz *et al.* "A concept for canceling the leakage field inside the stored beam chamber of a septum magnet" NIM A **886**, 7 (2017). [19] A. Xiao et al. Private communication.

Generalized gradient expansion (GGE) shows some deviations from the field measurements

- computeRBGGE found optimal "fit" using 6 multipoles and 2 derivatives
 - Rms "fit" error is 9X the 83 µT measurement error
- On-axis B_v and B_z match well, but B_x does not
- Field differences appear in all components off axis

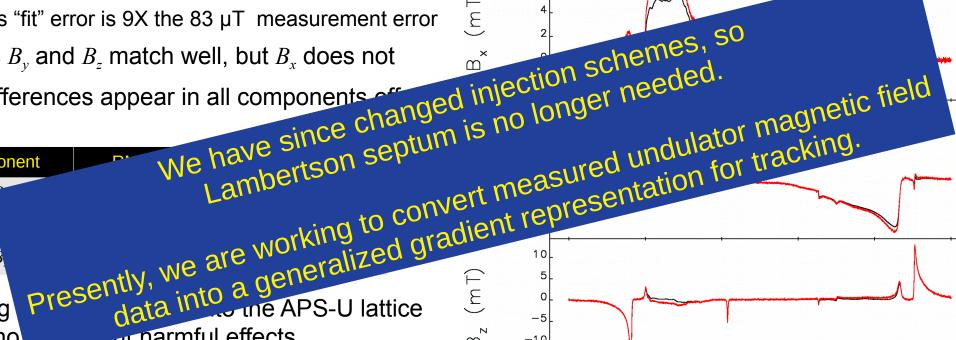
Component	RMS error	Largest error
$\Delta B_{_X}$	0.55 mT	5.84 mT
ΔB_y	0.41 mT	4.72 mT
ΔB_z	0.20 mT	6.88 mT

- Inserting BGGEXP model into the APS-U lattice shows no significant harmful effects
 - Prior results based on kickmaps appear to have been misleading

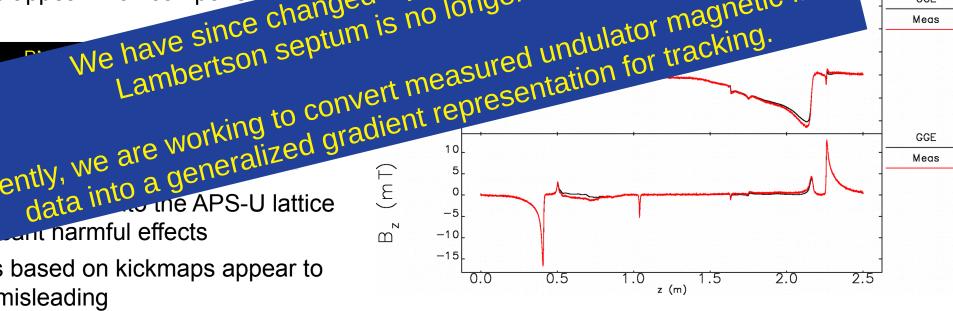


Generalized gradient expansion (GGE) shows some deviations from the field measurements

- computeRBGGE found optimal "fit" using 6 multipoles and 2 derivatives
 - Rms "fit" error is 9X the 83 µT measurement error
- On-axis B_v and B_z match well, but B_x does not
- Field differences appear in all components axis



- Inserting narmful effects shows no
 - Prior results based on kickmaps appear to have been misleading

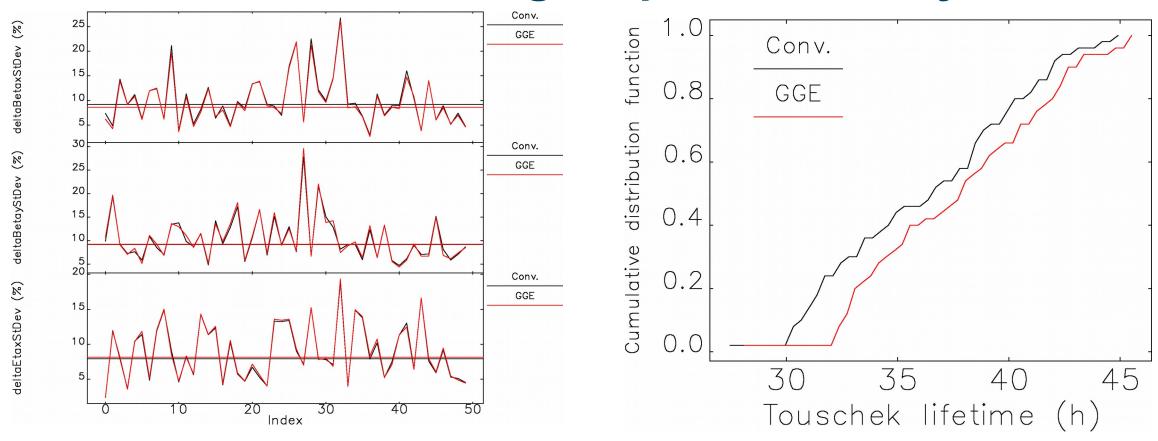


Component

Meas

Meas

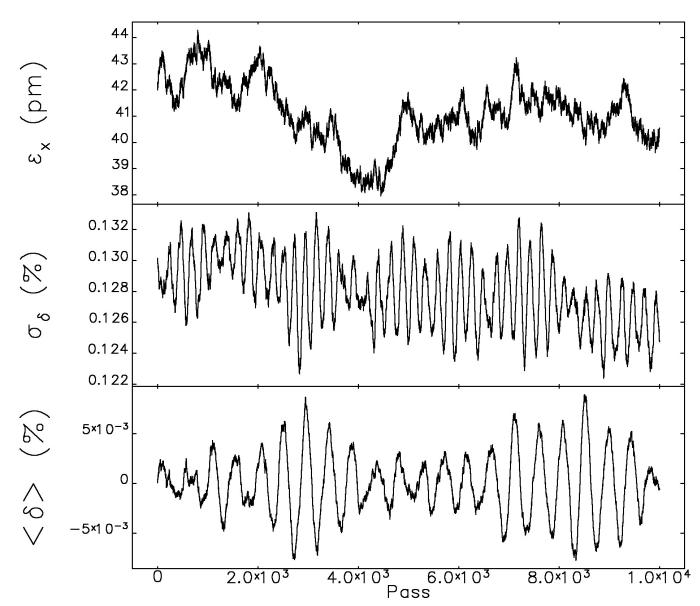
GGE and usual tracking respond similarly to errors



- Adding 30 micron rms misalignments to all sextupoles results in very similar lattice beating
- Computed the local momentum acceptance using 1000 turns for 50 instances of each case
- Resulting Touschek lifetimes differ by less than 8%, assuming $\varepsilon_x = \varepsilon_v = 30$ pm, $\sigma_\delta = 0.12\%$, $\sigma_t = 100$ ps
 - Note: direct tracking using large sextupole offsets to model errors would result in a larger emittance

GGE model confirms APS-U emittance

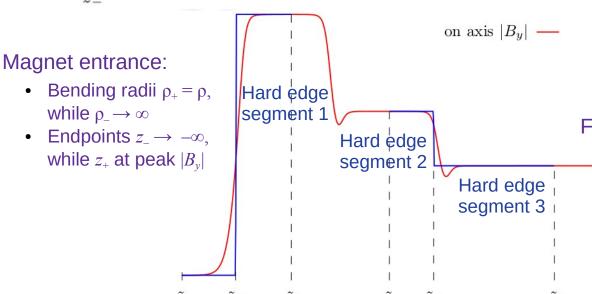
- Ultra-low emittance is a key deliverable for the APS-U
- The implementation of BGGEXP includes synchrotron emission
- Tracking of 1,000 particles, averaged over 5,000 turns:
 - Emittance = 41.0 pm ⊙
 - Energy spread = 0.127% ⊙
 - 48,000 core hours (!)
- Diffusion matrix computation takes ~200 core hours, and gives essentially identical results



A hard edge model of more complicated magnets

- The field in the hard edge magnet only depends on the transverse coordinates
 - Fields have unambiguous description in terms of multipole components
 - Tracking with explicit, symplectic integrators is possible using splitting methods
- The difference between the dynamics within the hard edge model and that in the actual magnetic field is collected under the umbrella of "fringe field" effects
- We define the hard edges such that the integrated bending field of the model matches the real magnet:

$$\int_{z_{-}}^{z_{+}} dz \ B_{y}(0,0,z) = \int_{z_{-}}^{z_{+}} dz \ C_{1}(z) = (z_{+} - z_{\text{edge}})C_{1}(z_{+}) + (z_{\text{edge}} - z_{-})C_{1}(z_{-}) = (z_{+} - z_{\text{edge}})\frac{p_{0}}{q} \frac{1}{\rho_{+}} + (z_{\text{edge}} - z_{-})\frac{p_{0}}{q} \frac{1}{\rho_{-}}$$



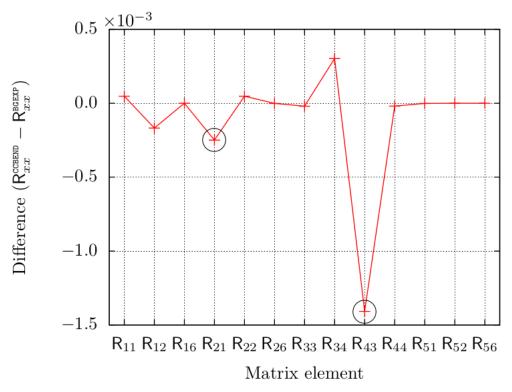
Multipole content is defined by the on-axis gradient + hard edges

Fringe between segments:

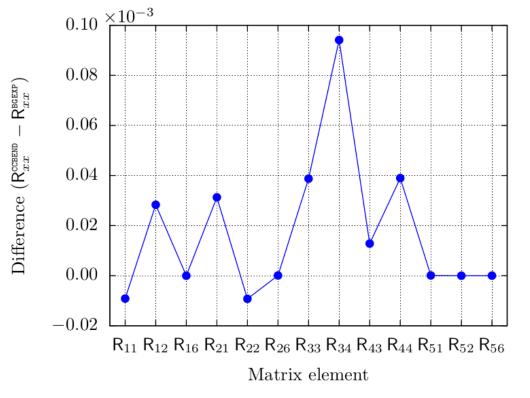
- Non-zero bending radii ρ_+ and ρ_- both upstream and downstream
- Endpoints z_{\pm} near the center of the flat-field region
- Fringe field is "more interesting"

Linear matrix element comparisons using the improved fringe field model for the Q4

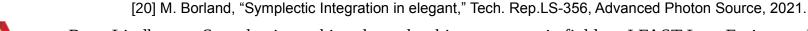
CCBEND model[19] but with no fringe effects



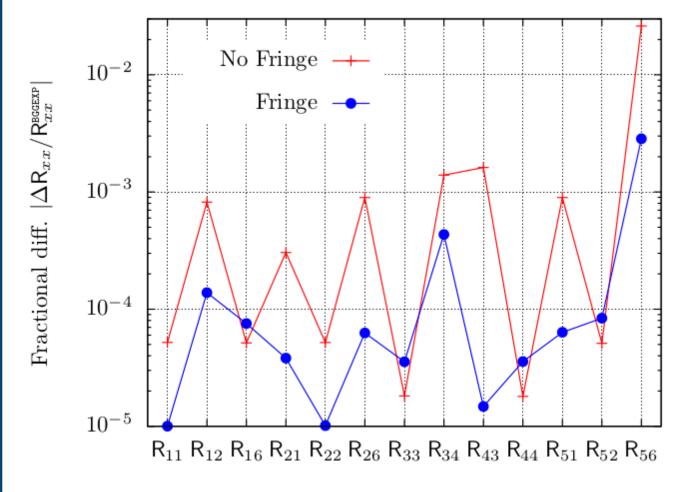
"Complete" CCBEND model with fringe effects



- Linear matrix elements of the hard edge model differ from GGE tracking by < 0.15%
- Improved fringe theory reduces differences in the linear matrix elements to the few x 10⁻⁵ level or better
- Hard edge model has "too much" focusing in both horizontal and vertical planes



Improved accuracy of the Q4 fringe field model is required to obtain good tune predictions



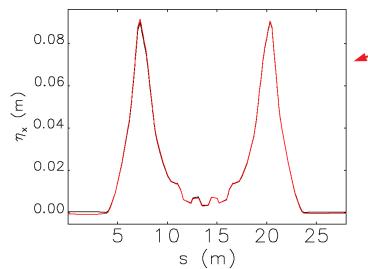
- Fractional error in the linear matrix elements are
 - ~ 0.1% without fringe contributions
 - ~ 0.02% including fringe terms
- Tunes are sensitive to the focusing in Q4 reverse bend due to its large beta function
- Are these models good enough for accurate modeling of the APS-U lattice?
 - Comparison of tunes shows very good agreement with fringe model included

Model	V_{x}	V_{x}
No Fringe	95.0038	36.1560
Fringe	94.9832	36.0872
BGGEXP	94.9856	36.0878

We feel reasonably confident that we are accurately modeling our transverse gradient reverse bends

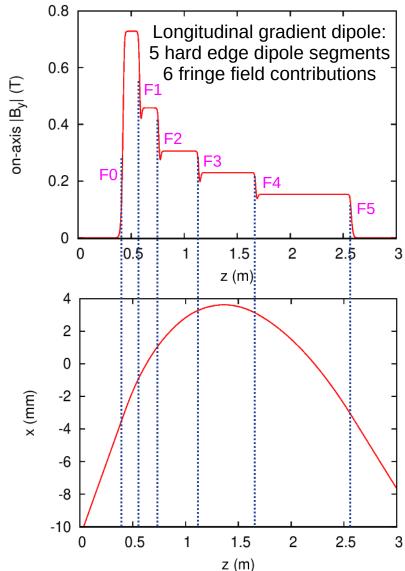
Very good results are found for both Q4 and Q5

Model	β_x (m)	β_y (m)	η_x (mm)	V_{x}	V_{x}	ξ_x	ξ_y
BGGEXP Q5	5.220	2.406	0.3938	95.116	36.076	-133.95	-111.39
CCBEND Q5	5.219	2.406	0.3936	95.115	36.076	-133.94	-111.39
BGGEXP Q4	5.071	2.398	0.3507	94.986	36.088	-131.45	-111.79
CCBEND Q4	5.068	2.399	0.3471	94.983	36.087	-131.41	-111.79
BGGEXP Q4+Q5	5.102	2.413	-0.6282	95.001	36.064	-132.09	-111.55
CCBEND Q4+Q5	5.085	2.414	0.4601	94.998	36.063	-131.68	-111.55

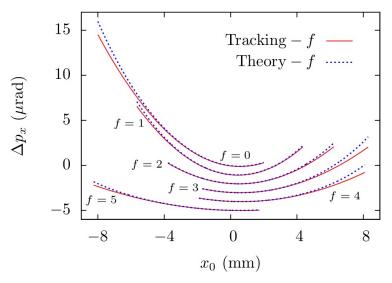


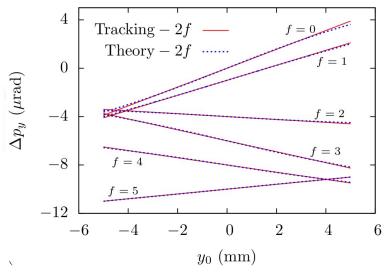
- Tunes agree to within 0.003 for all cases
- For models that just replace the Q4 or Q5 we have
 - Linear lattice function agreement to better than 1%
 - Chromaticities that are essentially identical
- Agreement of lattice functions and chromaticies are somewhat worse when we replace both Q4 & Q5
 - I assume that this is because both are essentially on the integer v_x resonance, but we'll see...

Generalized gradient tracking has verified a new model of our longitudinal gradient dipole



- Hard edges are set to match integrating bending field
- Fringe field maps defined by (actual field) (hard edge field)





Linear matrix from generalized gradient tracking (BGGEXP)

		2.2243 0.9995	0	0		$\begin{bmatrix} 0.04035 \\ 0.02857 \end{bmatrix}$
-(0	0	1.0009	2.2251	0	0.02857
	$0 \\ 0.02856$		0.00051	$\frac{1.0002}{0}$		$0 \\ 0.00029$
	0	0	0	0	0	1

Linear matrix from the new, hard-edge LGBEND element

0.99816	2.2242	0	0	0	0.04029
-0.00106	0.9995	0	0	0	0.02857
0	0	1.0010	2.2253	0	0
0	0	0.00056	1.0003	0	0
0.02856	0.0233	0	0	1	0.00029
0	0	0	0	0	1

