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● Background to symplectic tracking through arbitrary fields
● Our choice to tackle the problem: generalized gradients + implicit integration
● Examples of results using the APS-Upgrade lattice
● Existing challenges for large-angle dipoles and possible solutions
● Conclusions



Ryan Lindberg -- Symplectic tracking through arbitrary magnetic fields -- I.FAST Low Emittance Rings 2024

Outline and acknowledgments

2

● Background to symplectic tracking through arbitrary fields
● Our choice to tackle the problem: generalized gradients + implicit integration
● Examples of results using the APS-Upgrade lattice
● Existing challenges for large-angle dipoles and possible solutions
● Conclusions

● Acknowledgments:
● Michael Borland and Bob Soliday (APS)
● Marco Venturini (ALS/ALS-U)
● LCRC Bebop cluster at ANL and weed cluster at ASD



Ryan Lindberg -- Symplectic tracking through arbitrary magnetic fields -- I.FAST Low Emittance Rings 2024

Choice of symplectic integrator depends upon assumptions

3

Piece-wise
constant

Variation of
the magnetic

field B?

Vector potential A = As(x,y)s
H = T(px,py) + As(x,y)

Operator splitting yields
explicit, symplectic

integrators along s[1,2]

(kick/drift/kick) [1] E. Forest and R.D. Ruth. “Fourth-order symplectic integration,” Physica D 43, 105 (1990).
[2] H. Yoshida. “Construction of higher order symplectic integrators,” Phys. Lett. A 150, 262 (1990)
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for non-canonical coords exists if
the numerical representation has

 · B = 0 everywhere[3]
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H = T(px,py) + As(x,y)

Operator splitting yields
explicit, symplectic

integrators along s[1,2]

(kick/drift/kick)

Restrictions to
particle motion?

Paraxial/small
angle approx. + 
magnetic field B

Δ

[1] E. Forest and R.D. Ruth. “Fourth-order symplectic integration,” Physica D 43, 105 (1990).
[2] H. Yoshida. “Construction of higher order symplectic integrators,” Phys. Lett. A 150, 262 (1990)
[3] Y. He, Z.Q. Zhou, Y.J. Sun, J. Liu, and H. Qin. “Explicit K-symplectic algorithms for charged particle dynamics,” Phys. Lett. A 381, 568 (2017).
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[3] Y. He, Z.Q. Zhou, Y.J. Sun, J. Liu, and H. Qin. “Explicit K-symplectic algorithms for charged particle dynamics,” Phys. Lett. A 381, 568 (2017).
[4] Y. K. Wu, E. Forest, and D. S. Robin. “Explicit symplectic integrator for s-dependent static magnetic field,” Phys. Rev. E 68, 046502 (2003)
[5] A. Wolski and A.T. Herrod, “Explicit symplectic integrator for particle tracking...with curved reference trajectory,” PRST-AB 21, 084001 (2018).
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along s is possible if we also know
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Paraxial/small
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vector potential A
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[1] E. Forest and R.D. Ruth. “Fourth-order symplectic integration,” Physica D 43, 105 (1990).
[2] H. Yoshida. “Construction of higher order symplectic integrators,” Phys. Lett. A 150, 262 (1990)
[3] Y. He, Z.Q. Zhou, Y.J. Sun, J. Liu, and H. Qin. “Explicit K-symplectic algorithms for charged particle dynamics,” Phys. Lett. A 381, 568 (2017).
[4] Y. K. Wu, E. Forest, and D. S. Robin. “Explicit symplectic integrator for s-dependent static magnetic field,” Phys. Rev. E 68, 046502 (2003)
[5] A. Wolski and A.T. Herrod, “Explicit symplectic integrator for particle tracking...with curved reference trajectory,” PRST-AB 21, 084001 (2018).
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Our choice for symplectic integration

4

● We track particles using (symplectic) implicit midpoint method

      using the single particle Hamiltonian in Cartesian coordinates

Magnetic field B?
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Only need the 
vector potential 
at the midpoint 

s + Δs/2

Our choice for symplectic integration

4

● We track particles using (symplectic) implicit midpoint method

      using the single particle Hamiltonian in Cartesian coordinates

● Tracking requires a numerical representation of the vector potential A(x,y;sn+Δs/2) and its derivatives

Magnetic field B?

s s + Δs

Updated 
coordinates 
(xn+1, pn+1)

Initial 
coordinates 

(xn, pn)
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Dipole Quadrupole Sextupole

Only need the 
vector potential 
at the midpoint 

s + Δs/2

Our choice for symplectic integration

4

● We track particles using (symplectic) implicit midpoint method

      using the single particle Hamiltonian in Cartesian coordinates

● Tracking requires a numerical representation of the vector potential A(x,y;sn+Δs/2) and its derivatives

● We choose to represent the fields using the generalized gradient expansion
– The fields A and B are expressed using a generalized power series in the transverse coordinates
– The coefficients are located at discrete z (or s), and describe z-dependent “multipoles” and derivatives:

Magnetic field B?

s s + Δs

Updated 
coordinates 
(xn+1, pn+1)

Initial 
coordinates 

(xn, pn)
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Generalized gradients are an attractive field representation

5

● A. Dragt and colleagues developed the generalized gradient representation for accelerator tracking[6,7,8]

[6] M. Venturini and A. Dragt. “Accurate computation of transfer maps from magnetic field data,” Nucl. Instrum. Methods Res. A 427, 387 (1999).
[7] A. J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. Univ. of Maryland, College Park, 2020.
[8] C. E. Mitchell. “Calculation of Realistic charged-particle transfer maps.” PhD thesis, University of Maryland, College Park (2007).

Dipole Quadrupole Sextupole
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Generalized gradients are an attractive field representation

5

● A. Dragt and colleagues developed the generalized gradient representation for accelerator tracking[6,7,8]

● The generalized gradient representation enjoys a number of nice properties
– Provides an analytic expression of A on planes of constant z → Symplectic tracking is possible
– The equation    ∙ B = 0, while      B = 0 to a high order in the particle coordinates on planes of constant z.

[6] M. Venturini and A. Dragt. “Accurate computation of transfer maps from magnetic field data,” Nucl. Instrum. Methods Res. A 427, 387 (1999).
[7] A. J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. Univ. of Maryland, College Park, 2020.
[8] C. E. Mitchell. “Calculation of Realistic charged-particle transfer maps.” PhD thesis, University of Maryland, College Park (2007).

Dipole Quadrupole Sextupole

∆ × ∆



Ryan Lindberg -- Symplectic tracking through arbitrary magnetic fields -- I.FAST Low Emittance Rings 2024

Generalized gradients are an attractive field representation

5

● A. Dragt and colleagues developed the generalized gradient representation for accelerator tracking[6,7,8]

● The generalized gradient representation enjoys a number of nice properties
– Provides an analytic expression of A on planes of constant z → Symplectic tracking is possible
– The equation    ∙ B = 0, while      B = 0 to a high order in the particle coordinates on planes of constant z.

● The representation can be computed from measured or simulated magnetic field data on a boundary
– Orthogonal functions define the solution bases for circular, elliptical, and rectangular cylinders
– Solutions typically converge quite rapidly
– Fitting from boundary values tends to smooth any noise/errors in the data: difference between the ‘real’ 

and ‘generalized gradient’ field is a harmonic function whose maximum is on the boundary
● [6] M. Venturini and A. Dragt. “Accurate computation of transfer maps from magnetic field data,” Nucl. Instrum. Methods Res. A 427, 387 (1999).

[7] A. J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. Univ. of Maryland, College Park, 2020.
[8] C. E. Mitchell. “Calculation of Realistic charged-particle transfer maps.” PhD thesis, University of Maryland, College Park (2007).

Dipole Quadrupole Sextupole

∆ × ∆
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Tracking was added to elegant[9] using the BGGEXP element

6

● BGGEXP integrates particles through a field described by generalized gradients
– Symplectic integrator using implicit midpoint method

● Evaluates the vector potential A and updates the coordinates to locations between the data
● Requires iteration for convergence

– Nonsymplectic predictor-corrector
● Explicit, only needs B-field components → over 3 times faster

● Tracking through quadrupoles, sextupoles, wigglers, etc. is 
relatively straightforward

[9] M. Borland, “elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation”, LS-287 (2000).
[10] D. Sagan, E. Hamwi, and P Nishikawa. “Generalized Gradient field description using the Bmad and PRC Toolkits,” IPAC23, WEPL015 (2023), pp. 3136.
[11] W. Lin, D. Sagan, E. Hamwi, G. Hoffstaetter, and V. Schoefer, “Generalized gradient tracking in the Siberian snakes of the AGS and RHIC,” IPAC23, WEPA064 (2023), pp. 2793
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Tracking was added to elegant[9] using the BGGEXP element

6

● BGGEXP integrates particles through a field described by generalized gradients
– Symplectic integrator using implicit midpoint method

● Evaluates the vector potential A and updates the coordinates to locations between the data
● Requires iteration for convergence

– Nonsymplectic predictor-corrector
● Explicit, only needs B-field components → over 3 times faster

● Tracking through quadrupoles, sextupoles, wigglers, etc. is 
relatively straightforward

● Tracking through dipoles requires also defining input and out planes,                                                   
and using field scaling parameters to ensure correct bending angle

● Tracking through gradient dipoles requires careful setup
– Small changes in initial x will change the integrated bending field
– Fine-tuning of the strength and/or x-offset is typically needed

● Similar capabilities have been added to Bmad[10,11]

By (T)

[9] M. Borland, “elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation”, LS-287 (2000).
[10] D. Sagan, E. Hamwi, and P Nishikawa. “Generalized Gradient field description using the Bmad and PRC Toolkits,” IPAC23, WEPL015 (2023), pp. 3136.
[11] W. Lin, D. Sagan, E. Hamwi, G. Hoffstaetter, and V. Schoefer, “Generalized gradient tracking in the Siberian snakes of the AGS and RHIC,” IPAC23, WEPA064 (2023), pp. 2793

Reverse bend quadrupole 
for the APS-U
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Companion programs[12] use field data to compute the 
generalized gradient expansion for elegant tracking

7

● computeCBGGE uses the field data on the surface 
of a circular cylinder using equations from[6]

● computeRBGGE uses the field data on the surface 
of a rectangular cylinder using equations from[8] Xplus

Yplus

Xminus

Yminus

Normal field components on 
a rectangular cylinder define 
inputs for computeRBGGE

[12] M. Borland, R. R. Lindberg, R. Soliday, and A. Xiao, “Tools for Use of Generalized Gradient Expansions in Accelerator Simulations,” in Proc. IPAC’21, pp. 253
[6] M. Venturini and A. Dragt. “Accurate computation of transfer maps from magnetic field data,” Nucl. Instrum. Methods Res. A 427, 387 (1999).
[8] C. E. Mitchell. “Calculation of Realistic charged-particle transfer maps.” PhD thesis, University of Maryland, College Park (2007).
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Companion programs[12] use field data to compute the 
generalized gradient expansion for elegant tracking

7

● computeCBGGE uses the field data on the surface 
of a circular cylinder using equations from[6]

● computeRBGGE uses the field data on the surface 
of a rectangular cylinder using equations from[8]

● Both programs have several common features
1. Choice of computing the normal, skew, or both 

field components

2. Automated routine that finds the number of multipoles 
and derivatives to best match data

3. Parallel computing using OpenMP

4. Output files in a format suitable for the BGGEXP 
tracking element in elegant[9]

Xplus

Yplus

Xminus

Yminus

Normal field components on 
a rectangular cylinder define 
inputs for computeRBGGE

[12] M. Borland, R. R. Lindberg, R. Soliday, and A. Xiao, “Tools for Use of Generalized Gradient Expansions in Accelerator Simulations,” in Proc. IPAC’21, pp. 253
[6] M. Venturini and A. Dragt. “Accurate computation of transfer maps from magnetic field data,” Nucl. Instrum. Methods Res. A 427, 387 (1999).
[8] C. E. Mitchell. “Calculation of Realistic charged-particle transfer maps.” PhD thesis, University of Maryland, College Park (2007).
[9] M. Borland, “elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation”, LS-287 (2000).
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Application to APS-U’s hybrid 7+BA lattice[13]; εx = 42 pm[14]

8

Dipoles

Reverse bend 
dipoles

Quadrupoles

Sextupoles

[13] L. Farvacque et al. “A Low-Emittance Lattice for the ESRF,” IPAC 2013, pp 79; L. Farvacque, et al., “ESRF-EBS Design Report,” ed. by D. Einfeld and P. Raimondi (2018).
[14] M. Borland, Y. Sun, V. Sajaev, R. R. Lindberg, and T. Berenc. “Lower Emittance Lattice for the Advanced Photon Source Upgrade Using Reverse Bending Magnets,” in NAPAC 2016, pp. 877
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Application to APS-U’s hybrid 7+BA lattice[13]; εx = 42 pm[14]
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Dipoles

Reverse bend 
dipoles

Quadrupoles

Sextupoles

Longitudinal gradient dipole

Transverse 
gradient dipole

[13] L. Farvacque et al. “A Low-Emittance Lattice for the ESRF,” IPAC 2013, pp 79; L. Farvacque, et al., “ESRF-EBS Design Report,” ed. by D. Einfeld and P. Raimondi (2018).
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Application to APS-U’s hybrid 7+BA lattice[13]; εx = 42 pm[14]

8

Dipoles

Reverse bend 
dipoles

Quadrupoles

Sextupoles

Longitudinal gradient dipole

Transverse 
gradient dipole

Transverse 
gradient 
reverse 

bend

[13] L. Farvacque et al. “A Low-Emittance Lattice for the ESRF,” IPAC 2013, pp 79; L. Farvacque, et al., “ESRF-EBS Design Report,” ed. by D. Einfeld and P. Raimondi (2018).
[14] M. Borland, Y. Sun, V. Sajaev, R. R. Lindberg, and T. Berenc. “Lower Emittance Lattice for the Advanced Photon Source Upgrade Using Reverse Bending Magnets,” in NAPAC 2016, pp. 877
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Generalized gradients from simulated magnetic data

9

1. Start with simulation data

x-z cut of By (T) from OPERA of 
the APS-U’s Q4 reverse bend 
transverse gradient dipole[15]

[15] M. Jaski et al. “Magnet Designs for the Multi-bend Achromat Lattice 
at the Advanced Photon Source,” in Proc. IPAC’15, pp. 3260.
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Generalized gradients from simulated magnetic data

9

1. Start with simulation data

2. Evaluate normal component of B on a 
bounding surface

By (T)

x-z cut of By (T) from OPERA of 
the APS-U’s Q4 reverse bend 
transverse gradient dipole[15]

3

φ
 (

d e
g )

B ∙ n on 10 mm radius cylinder

[15] M. Jaski et al. “Magnet Designs for the Multi-bend Achromat Lattice 
at the Advanced Photon Source,” in Proc. IPAC’15, pp. 3260.
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Generalized gradients from simulated magnetic data

9

1. Start with simulation data

2. Evaluate normal component of B on a 
bounding surface

3. Compute and retain generalized gradients 
that minimize ΔB on the boundary

By (T)

x-z cut of By (T) from OPERA of 
the APS-U’s Q4 reverse bend 
transverse gradient dipole[15]

3

1.0
0.8
0.6
0.4
0.2
0.0
–0.2
–0.4
–0.6
–0.8
–1.0

φ
 (

d e
g )

z (m)

B ∙ n on 10 mm radius cylinder Use computeCBGGE to compute 
generalized gradients

+ higher order multipoles 
+ their z derivatives

Br (T)

[15] M. Jaski et al. “Magnet Designs for the Multi-bend Achromat Lattice 
at the Advanced Photon Source,” in Proc. IPAC’15, pp. 3260.
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Generalized gradients from simulated magnetic data

9

1. Start with simulation data

2. Evaluate normal component of B on a 
bounding surface

3. Compute and retain generalized gradients 
that minimize ΔB on the boundary

4. Use in tracking

By (T)

x-z cut of By (T) from OPERA of 
the APS-U’s Q4 reverse bend 
transverse gradient dipole[15]
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+ higher order multipoles 
+ their z derivatives
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[15] M. Jaski et al. “Magnet Designs for the Multi-bend Achromat Lattice 
at the Advanced Photon Source,” in Proc. IPAC’15, pp. 3260.
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Model of the longitudinal gradient dipole looks good

10

● Magnets 

On-axis comparison
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Model of the longitudinal gradient dipole looks good

10

● Magnets 

●
x = 0, y = 10 mm

20 mm

30 mm

Comparison at the top 
of the box

On-axis comparison
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All-GGE lattice of APS-U tuned to match design[16]

11

● We used OPERA data from M. Jaski to 
assemble an all-GGE APS-U lattice model

● Matching of models requires two steps
– Tune each GGE element to match the      

2nd order properties of each magnet
– Apply global tuning to control the orbit and 

reproduce the linear optics and chromaticity

[16] R.Lindberg and M. Borland. “Storage ring tracking using generalized gradient representation 
        of full magnetic field maps,” in Proc. of the 2022 NAPAC, pp. 542.
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All-GGE lattice of APS-U tuned to match design[16]

11

● We used OPERA data from M. Jaski to 
assemble an all-GGE APS-U lattice model

● Matching of models requires two steps
– Tune each GGE element to match the      

2nd order properties of each magnet
– Apply global tuning to control the orbit and 

reproduce the linear optics and chromaticity
● This is laborious, but works well

– Relies on the numerical computation of   
2nd-order transport matrices[17]

– Optimization is only practical because of 
parallelization[18]

[16] R.Lindberg and M. Borland. “Storage ring tracking using generalized gradient representation 
        of full magnetic field maps,” in Proc. of the 2022 NAPAC, pp. 542.
[17] M. Borland, “A High-Brightness thermionic microwave electron gun,”  PhD thesis,
        Stanford University, SLAC-402, (1991).
[18] Y. Wang and M. Borland, “Pelegant: A Parallel Accelerator Simulation Code for Electron
        Generation and Tracking,” AIP Conf. Proc., 877, 241 (2006).

APS-U lattice from hard edge models: black
APS-U lattice using GGEs for each magnet: red
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Chromatic tune footprint matches fairly well

12

● The tune’s dependence on energy is quite close over the entire range
● GGE “tuning” only matched linear optics and chromaticities
● GGE tracking takes about 280 times longer
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Chromatic tune footprint matches fairly well

12

● The tune’s dependence on energy is quite close over the entire range
● GGE “tuning” only matched linear optics and chromaticities
● GGE tracking takes about 280 times longer

GGE

Conventional
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Nonlinear dynamics are similar 

13

● The predictions for the dynamic acceptance agree reasonably well
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Nonlinear dynamics are similar 

13

● The predictions for the dynamic acceptance agree reasonably well
● The frequency maps are vaguely similar

– Same overall shape, but clearly different details
– We are investigating possible sources of discrepancy
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The magnitude of the GGE tuning indicates that 
some hard-edge models could be improved

14

● After tuning the GGE model, the straight magnets have integrated 
strengths very close to design values

Comparison of integrated strength

Magnet        Design to      Design          GGE
 Name         GGE ratio   length (m)    length (m)
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The magnitude of the GGE tuning indicates that 
some hard-edge models could be improved
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● After tuning the GGE model, the straight magnets have integrated 
strengths very close to design values

● Matching the transverse gradient dipoles require changing the GGE 
dipole and quadrupole strengths by a few percent

Element         Dipole         Quadrupole       DX
 Name           Factor              Factor         (mm)

Comparison of integrated strength

Magnet        Design to      Design          GGE
 Name         GGE ratio   length (m)    length (m)

Tuning parameters for transverse gradient dipoles
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The magnitude of the GGE tuning indicates that 
some hard-edge models could be improved

14

● After tuning the GGE model, the straight magnets have integrated 
strengths very close to design values

● Matching the transverse gradient dipoles require changing the GGE 
dipole and quadrupole strengths by a few percent

● Matching the longitudinal gradient dipoles requires small strength 
adjustments, but large (~2 mm) longitudinal displacements.
– Hard edge model of longitudinal gradient dipole has long been troublesome
– Could we improve matters with better fringe field modeling?

Element         Dipole         Quadrupole       DX
 Name           Factor              Factor         (mm)

Tuning parameters for
longitudinal gradient dipoles

Element        Dipole            DZ
 Name           Factor          (mm)

Comparison of integrated strength

Magnet        Design to      Design          GGE
 Name         GGE ratio   length (m)    length (m)

Tuning parameters for transverse gradient dipoles
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Challenges for our choice of symplectic tracking

15

● The techniques described previously work well for magnets whose reference orbit is close to the z-axis 
(straight magnets and dipoles with small bending angles: APS-U dipoles have bending angle < 30 mrad)

● The representation of the magnetic field is less reliable for large bending angles (large sagitta)
– Transverse Taylor series is about the z-axis, and may converge poorly at large x 
– Wide magnets with disparate length scales in x and y are particularly problematic

Dipole with 45 degree bend used in the
APS Particle Accumulator Ring (PAR)
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● The techniques described previously work well for magnets whose reference orbit is close to the z-axis 
(straight magnets and dipoles with small bending angles: APS-U dipoles have bending angle < 30 mrad)

● The representation of the magnetic field is less reliable for large bending angles (large sagitta)
– Transverse Taylor series is about the z-axis, and may converge poorly at large x 
– Wide magnets with disparate length scales in x and y are particularly problematic

● As an extreme example, consider an infinitely wide

whose magnetic potential

● We get this using our circular generalized gradient                                                                            
expansion if the coefficients satisfy

● Hence, careful cancellation of high-order terms is                                                                                 
required to properly model the dipole at large sagitta

Dipole with 45 degree bend used in the
APS Particle Accumulator Ring (PAR)
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Challenges for our choice of symplectic tracking

15

● The techniques described previously work well for magnets whose reference orbit is close to the z-axis 
(straight magnets and dipoles with small bending angles: APS-U dipoles have bending angle < 30 mrad)

● The representation of the magnetic field is less reliable for large bending angles (large sagitta)
– Transverse Taylor series is about the z-axis, and may converge poorly at large x 
– Wide magnets with disparate length scales in x and y are particularly problematic

● As an extreme example, consider an infinitely wide

whose magnetic potential

● We get this using our circular generalized gradient                                                                            
expansion if the coefficients satisfy

● Hence, careful cancellation of high-order terms is                                                                                 
required to properly model the dipole at large sagitta
– Increased sensitivity to numerical errors
– Similar “feed-down” effects can plague multipole                                                                                              

error terms in straight-pole magnets

Gradient dipole with 10 degree bend 
planned for the ALS-U Accumulator ring[19]

,                        0

[19] M. Venturini, private communication.
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One fix is to expand field about reference orbit

16

● Boundary techniques of generalized gradients can be extended with “bent-box” method[8]

– First envisioned as employing a bounding surface that is bent to                                                                            
follow the reference trajectory and keep it along the center

Normal component of B               Magnetic potential

[8] C. E. Mitchell. “Calculation of Realistic charged-particle transfer maps.” PhD thesis, Univ. of Maryland, College Park (2007).
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follow the reference trajectory and keep it along the center

– Works equally well with a curved orbit enclosed by a rectangular boundary

Normal component of B               Magnetic potential
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● Boundary techniques of generalized gradients can be extended with “bent-box” method[8]

– First envisioned as employing a bounding surface that is bent to                                                                            
follow the reference trajectory and keep it along the center

– Works equally well with a curved orbit enclosed by a rectangular boundary

● Analytic expressions for A and its derviatives are obtained by Taylor                                                
expanding about the reference trajectory

● While conceptually the same as the previous generalized gradient                                                        
method, its numerical implementation is different

Dipole with 45 degree bend for the
APS Particle Accumulator ring

Normal component of B               Magnetic potential

[8] C. E. Mitchell. “Calculation of Realistic charged-particle transfer maps.” PhD thesis, Univ. of Maryland, College Park (2007).

45 degree dipole in APS PAR
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One fix is to expand field about reference orbit

16

● Boundary techniques of generalized gradients can be extended with “bent-box” method[8]

– First envisioned as employing a bounding surface that is bent to                                                                            
follow the reference trajectory and keep it along the center

– Works equally well with a curved orbit enclosed by a rectangular boundary

● Analytic expressions for A and its derviatives are obtained by Taylor                                                
expanding about the reference trajectory

● While conceptually the same as the previous generalized gradient                                                        
method, its numerical implementation is different

● It will be interesting to compare this method of symplectic tracking                                                                   
with that proposed in[5] 
– Expands the Hamiltonian in both coordinates and moments
– Uses different formulation of B-field in toroidal coordinates Dipole with 45 degree bend for the

APS Particle Accumulator ring

Normal component of B               Magnetic potential

[8] C. E. Mitchell. “Calculation of Realistic charged-particle transfer maps.” PhD thesis, Univ. of Maryland, College Park (2007).
[5] A. Wolski and A.T. Herrod, “Explicit symplectic integrator...with curved reference trajectory,” PRST-AB 21, 084001 (2018).

45 degree dipole in APS PAR
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Summary and future directions

17

● The generalized gradient representation is appealing for accelerator modeling
– Field is represented as a Taylor series in the transverse coordinates
– Field is divergence free and suitable for symplectic tracking

● Generalized gradients can be accurately computed from magnetic field data
– Data can be from simulations or measurements
– Data can be on rectangular prisms or circular cylinders

● We provide convenient tools to compute the generalized gradients for elegant particle tracking
● We have used generalized gradients for a variety of  APS-U modeling tasks

– Evaluation of effects of leakage fields of a Lambertson septum
– Verification of nonlinear dynamics and emittance
– Validation of improved hard edge and fringe models for Cartesian gradient dipoles

● Plans include expanding tools to include curved surfaces
– Generalized gradient models of dipoles with large bending angles
– Fringe field modeling for transverse gradient sector bends 
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Extra slides

18
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Magnetic boundary data define the generalized gradients

19

● Published computational techniques use the normal component of B on a generalized 
cylinder[5,6,7]

– Orthogonal functions define bases in circular, elliptical, and rectangular cylinder
– Solutions converge rapidly and also smooth any noise/errors in the boundary data

● GG-”true solution” is a harmonic function whose maximum must lie on the boundary

● If the field has Bz ≠ 0 on-axis (solenoidal component), we found that Bz on the boundary 
is also needed

Leakage field for the (no longer used) 
APS-U Lambertson septum
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Application to modeling the septum leakage field

20

[18] M. Abliz et al. “A concept for canceling the leakage field inside the stored beam chamber of a septum magnet” NIM A 886, 7 (2017).
[19] A. Xiao et al. Private communication.

● Prototype APS-U Lambertson septum magnet[18] was built by FNAL and measured in May 2021
● Measurements by M. Kasa, et al. showed similar field map profiles to simulations, but with integrated 

leakage fields ~4 times larger than simulation predicted (error in construction)
● Previous studies indicated that a leakage field of this size could reduce injection efficiency and lifetime[19]

● We studied this issue using a generalized gradient field model derived from measurements
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Generalized gradient expansion (GGE) shows some 
deviations from the field measurements

21

● computeRBGGE found optimal “fit” using 6 
multipoles and 2 derivatives
– Rms “fit” error is 9X the 83 μT  measurement error

● On-axis By and Bz match well, but Bx does not

● Field differences appear in all components off 
axis

● Inserting BGGEXP model into the APS-U lattice 
shows no significant harmful effects
– Prior results based on kickmaps appear to 

have been misleading

Component RMS error Largest error

∆Bx 0.55 mT 5.84 mT

∆By 0.41 mT 4.72 mT

∆Bz 0.20 mT 6.88 mT
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Generalized gradient expansion (GGE) shows some 
deviations from the field measurements

21

● computeRBGGE found optimal “fit” using 6 
multipoles and 2 derivatives
– Rms “fit” error is 9X the 83 μT  measurement error

● On-axis By and Bz match well, but Bx does not

● Field differences appear in all components off 
axis

● Inserting BGGEXP model into the APS-U lattice 
shows no significant harmful effects
– Prior results based on kickmaps appear to 

have been misleading

Component RMS error Largest error

∆Bx 0.55 mT 5.84 mT

∆By 0.41 mT 4.72 mT

∆Bz 0.20 mT 6.88 mT

We have since changed injection schemes, so 

Lambertson septum is no longer needed.

Presently, we are working to convert measured undulator magnetic field 

data into a generalized gradient representation for tracking.
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GGE and usual tracking respond similarly to errors

22

● Adding 30 micron rms misalignments to all sextupoles results in very similar lattice beating
● Computed the local momentum acceptance using 1000 turns for 50 instances of each case
● Resulting Touschek lifetimes differ by less than 8%, assuming εx = εy = 30 pm, σδ = 0.12%, σt = 100 ps

– Note: direct tracking using large sextupole offsets to model errors would result in a larger emittance 



Ryan Lindberg -- Symplectic tracking through arbitrary magnetic fields -- I.FAST Low Emittance Rings 2024

GGE model confirms APS-U emittance

23

● Ultra-low emittance is a key 
deliverable for the APS-U

● The implementation of BGGEXP 
includes synchrotron emission

● Tracking of 1,000 particles, 
averaged over 5,000 turns:
– Emittance = 41.0 pm ☺
– Energy spread = 0.127% ☺
– 48,000 core hours (!)

● Diffusion matrix computation 
takes ~200 core hours, and gives 
essentially identical results
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A hard edge model of more complicated magnets

24

● The field in the hard edge magnet only depends on the transverse coordinates
– Fields have unambiguous description in terms of multipole components
– Tracking with explicit, symplectic integrators is possible using splitting methods

● The difference between the dynamics within the hard edge model and that in the actual magnetic field is 
collected under the umbrella of “fringe field” effects

● We define the hard edges such that the integrated bending field of the model matches the real magnet:

Magnet entrance:
● Bending radii ρ+ = ρ, 

while ρ– → ∞
● Endpoints z– →  –∞,  

while z+ at peak |By|

Fringe between segments:
● Non-zero bending radii ρ+ and ρ–  

both upstream and downstream
● Endpoints z± near the center of 

the flat-field region
● Fringe field is “more interesting”

Hard edge 
segment 1

Hard edge 
segment 3

Hard edge 
segment 2

Multipole content is defined by the 
on-axis gradient + hard edges
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Linear matrix element comparisons using the 
improved fringe field model for the Q4

25

● Linear matrix elements of the hard edge model differ from GGE tracking by < 0.15% 
● Improved fringe theory reduces differences in the linear matrix elements to the few x 10–5 level or better
● Hard edge model has “too much” focusing in both horizontal and vertical planes

CCBEND model[19] but with no fringe effects “Complete” CCBEND model with fringe effects

[20] M. Borland, “Symplectic Integration in elegant,” Tech. Rep.LS-356, Advanced Photon Source, 2021.
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Improved accuracy of the Q4 fringe field model is 
required to obtain good tune predictions

26

● Fractional error in the linear matrix elements are
– ~ 0.1% without fringe contributions
– ~ 0.02% including fringe terms

● Tunes are sensitive to the focusing in Q4 
reverse bend due to its large beta function

● Are these models good enough for accurate 
modeling of the APS-U lattice?
– Comparison of tunes shows very good 

agreement with fringe model included

Model νx νx

No Fringe 95.0038 36.1560

Fringe 94.9832 36.0872

BGGEXP 94.9856 36.0878

We feel reasonably confident that we are accurately modeling our transverse gradient reverse bends
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Very good results are found for both Q4 and Q5

27

● Tunes agree to within 0.003 for all cases
● For models that just replace the Q4 or Q5 we have

– Linear lattice function agreement to better than 1%
– Chromaticities that are essentially identical

● Agreement of lattice functions and chromaticies are 
somewhat worse when we replace both Q4 & Q5

– I assume that this is because both are essentially 
on the integer νx resonance, but we’ll see…

Model βx (m) βy (m) ηx (mm) νx νx ξx ξy

BGGEXP Q5 5.220 2.406 0.3938 95.116 36.076 –133.95 –111.39

CCBEND Q5 5.219 2.406 0.3936 95.115 36.076 –133.94 –111.39

BGGEXP Q4 5.071 2.398 0.3507 94.986 36.088 –131.45 –111.79

CCBEND Q4 5.068 2.399 0.3471 94.983 36.087 –131.41 –111.79

BGGEXP Q4+Q5 5.102 2.413 –0.6282 95.001 36.064 –132.09 –111.55

CCBEND Q4+Q5 5.085 2.414 0.4601 94.998 36.063 –131.68 –111.55
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F0

F1

F2

F3
F4

F5

F0 F0

F1

F1

F2

F2

F3

F3F4

F4
F5

F5

Longitudinal gradient dipole:
5 hard edge dipole segments

6 fringe field contributions

Linear matrix from generalized 
gradient tracking (BGGEXP)

Linear matrix from the new,  
hard-edge LGBEND element

Generalized gradient tracking has verified a new model 
of our longitudinal gradient dipole

● Hard edges are set to match integrating bending field
● Fringe field maps defined by (actual field) – (hard edge field)
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