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CNPEM campus

SIRIUS design parameters
Energy 3.0 GeV
Circumference 518.4 m
Emittance 250 pm.rad
Current (top-up) 350 mA

• Green-field facility

• Construction: 2012 – 2020

• Cost: US$ 500M (∼85% spent in Brazil)

• 1st regular users call: Nov. 2022

• 10 beamlines in operation

• 100 mA in top-mode mode, uniform fill

• Phase-1 (end of 2024): 14 beamlines

Campinas
Brazil

SIRIUS – 4GSR in Operation

Brazilian Center for Research in 
Energy and Materials (CNPEM)
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CARNAÚBA
(nanoprobe)

CATERETÊ
(CDI/XPCS)EMA

(Extreme Cond.)

IMBUIA
(nano & m FTIR)

MANACA
(MX)

SABIÁ
(XMCD/PEEM)

IPÊ
(RIXS/ XPS)

SAPÊ 
(ARPES)

PAINEIRA
(XPD)

SAPUCAIA
(SAXS)

QUATI
(XAFS)

JATOBÁ
(PDF)

CEDRO
(SRCD)

MOGNO 
(mCT)

OPERATION

https://www.lnls.cnpem.br/beamlines/

83 submitted
20 approved

67 submitted
41 approved

41 submitted
24 approved

45 submitted
26 approved

82 submitted
33 approved

Third Cycle of Proposals (1S 2024)
Total:              422 submitted / 225 approved 
From Brazil:   376 submitted / 198 approved
Form abroad:  46 submitted /   27 approved

18 submitted
15 approved

46 submitted
36 approved

40 submitted
30 approved

Fast track

Fast track

INSTALLATION

CONSTRUCTION

SIRIUS Beamlines – Phase 1

Courtesy: Harry Westfahl
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LINAC
150 MeV

BOOSTER
3 GeV
3.5 nm.rad

STORAGE RING
3 GeV

250 pm.rad

B2
B1 B1

B2
BC

Quadrupole 
doublet

EM dipoles
B=0.58 T

PM superbend
B=3.2 T, ec=19keV

Quadrupole triplet

EM dipoles
B=0.58 T

Storage Ring parameters

Beam energy 3.0  GeV

Circumference 518.4  m

Lattice 20 x 5BA 

Current, top up 350 mA 

Hor. emittance 250 pm

RF frequency 500 MHz

Emit. ratio ey/ex 2%

Main Design Parameters

Courtesy: Liu Lin
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sx = 9.5 µm
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5-fold symmetric optics: 
• 5 high b sections 
• 15 low b sections 

βx ≈ βy ≈ 1.5 m

Better matching of e- and photon beam phase 
spaces for undulators → higher brightness
Small H and V beam stay clear → small gap 
undulators
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Main Design Parameters

Courtesy: Liu Lin
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Storage Ring Injection
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Storage Ring Injection

• NLK uses BESSY type wire configuration with titanium coated ceramic
chamber (~8 µm thickness);

• Grooves were machined on the ceramic exterior to house the wires
firmly
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Storage Ring Injection

Dipole Kicker → (comissioning, recovery)

• NLK uses BESSY type wire configuration with titanium coated ceramic
chamber (~8 µm thickness);

• Grooves were machined on the ceramic exterior to house the wires
firmly
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Long-Term Stability (weeks - 1 hour)
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• Running for users since March 2023

• Current: 100 mA

• Injection: 1 pulse every 3 min

• uniform filling in 864 bunches

• Thermionic e-gun bias voltage used as 
charge control parameter
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Top-up Operation
Courtesy: Ximenes Resende
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BPMs Drift and Temperature
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• BPMs Drift:
o Operation with antennas switching helps against temp. changes;
o BBA is performed periodically (monthly) after machine maintenances;
o Large offsets variations detected on some BPMs;
o Not sure about the time-scale of these variations;
o X-BPMs not operational yet. Work in progress;
o No complaints from beamlines;

BPMs Drift and Temperature
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• Temperature:
o Daily and seasonal correlation among HLS readings, concrete 

temperatures, and external temps.;
o Apparently not detrimental to beamlines experiments;
o Large effort to improve temp. control of tunnel, water and hall;
o Almost all temperatures under specification limits (0.1°C to 0.5°C);
o Periodic verification of magnets temperatures.
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o Plans to de-activate the well are in progress;
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Mid-Term Stability (10-3 – 103 Hz)
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Booster Ramp (2 Hz) and Mains (60 Hz)
• Booster ramping in the same tunnel of SR:

o In top-up operation mode, booster keeps ramping all day long;

o Influence on the SR orbit comes mainly from Dipoles ramp;

o Not sure whether from magnets or cables;

o Booster RF also creates small noise on neighboring SR BPMs.

Courtesy: Murilo Alves
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• Mains perturbations:
o Disturbance mainly on the horizontal orbit;

o Magnets PS ripple ruled out by direct meas. and/or tests with beam;

o Most likely cause is some grounding issue;

o Most probable location is the SS of the RF cavity (Sector 02);

o Before FOFB it was very detrimental to nano-focusing beamlines;

o Currently it’s not a problem, but still seen by these beamlines;
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Vibrations
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5 GPa elastic 
modulus resin 
to the concrete 
floor

High compressive 
strength concrete

Girder with 10μm
flatness integrated 
references

Specially designed 
high rigidity XYZ 
adjustment

1st Vert. mode: 268 Hz 1st Horiz. mode: 152 Hz

Vibrations
• High Stability Floor:

o Binary structure for the high stability floor: A 90 (60) cm 
concrete slab on top of a more than 3m deep compacted layer of
soil-concrete under the machine tunnel (experimental hall).

• Very rigid girder:
o All machine componentes aligned by construction.

Measured Values
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RF Plant perturbations

Courtesy: David Daminelli
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RF Plant perturbations
• Until 2023 LLRF operated with very low PI gain (bw < 20 Hz):

o No control of Robinson detuning;

o Perturbations on the beam at n x 64Hz (created by DAC).

• First attempts to increase gain:

o Perturbations of 60Hz, not present with low gains;

o Problem in the feedback branch.

• Operation with high PI gain (bw > 3kHz):

o Only possible after fixing the 60Hz with a high pass filter;

o And re-evaluating how to adjust phase shifter;

o Phase stability ~0.02° and energy stability < 2% of σδ.

Courtesy: David Daminelli
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Change of Working Point

• Change of working point to higher fractional tunes to reduce orbit amp. factor;

• Old tunes: (49.07, 14.14) New tunes: (49.16, 14.22);

• Needed Non-linear Dynamics optimization:
• Robust Conjugate Direction Search (RCDS)

• Collaboration with Xiaobiao Huang (SLAC)

• Objective: avg. injection efficiency of 5 pulses @ 2Hz;

• Noise-sigma ~ 1%

• Optimization knobs:
• 6 achromatic + 15 chromatic familes

• Combination of sextupoles in 13 knobs and 17 knobs

• Injection efficiency > 95%;
• No impact on lifetime;

Kick resilience

Phase space measurement

Courtesy: Matheus Velloso
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Fast Orbit Feedback (FOFB)

• FOFB design principles:

o 2 BPMs, 2 FCH, 2FCV per source point 
(SP) → angle and pos. stability at SPs;
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Fast Orbit Feedback (FOFB)

0.3 mm SS vac. chamber

• FOFB design principles:

o 2 BPMs, 2 FCH, 2FCV per source point 
(SP) → angle and pos. stability at SPs;
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• 0.5 mm FeSi steel lamination
• L = 3.3/6.6 mH (normal/skew)
• R = 80/180 mΩ (normal/skew)
• Deflection @ 3 GeV: 30 µrad

o High bandwidth actuators ( ~20kHz);
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o Highest possible update rate (48kHz, 

20us): ideally data distribution 
(~14us) should dominate delay (not 
achieved, but close);

o Real-time processing in hardware 
(FPGA) and integration as tight as 
possible;
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FOFB System Identification – Closed Loop

• Measured loop delay (step on BPM signal to 

fast corrector current change): 51 µs

Courtesy: Daniel Tavares and Erico Rolim
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• Closed loop identification method:
o PRBS added to BPMs: one left-singular vector of 

the response matrix (MF) at a time;
o Closed loop data measured and projected into the 

excited singular vector;
o Ratio of output over input gives the sensitivity;

Pseudo random
Binary Sequence (PRBS)
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FOFB System Identification – Closed Loop

• Measured loop delay (step on BPM signal to 

fast corrector current change): 51 µs

Disturbance rejection response per direction

1 kHz

Courtesy: Daniel Tavares and Erico Rolim

• First 118 dirs.: 
o crossover at 1kHz;
o peak ~5.5dB.

• Similar to SISO with same gain and delay;

• Last 38 dirs. saturated actuators and could 
not be measured properly;

• Analysis of off-diagonal terms still missing.

• Closed loop identification method:
o PRBS added to BPMs: one left-singular vector of 
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o Closed loop data measured and projected into the 
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o Ratio of output over input gives the sensitivity;
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FOFB Performance (Oct 2023)

Courtesy: Daniel Tavares and Erico Rolim
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FOFB Performance (Oct 2023)

Courtesy: Daniel Tavares and Erico Rolim

Orbit RMS relative to nominal beam size
Horizontal

2% of
Beam Size
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Short-Term Stability (103 Hz – Turn by Turn)
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Injection Perturbations: Septa Leak Field

PULSED SEPTA
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Injection Perturbations: Septa Leak Field

• Attempts with passive
shielding were not enough;

• FF using fast corrector magnets from FOFB 
(~20kHz bandwidth);

• FOFB PSs do not have waveform functionality
-> PS from SOFB correctors had to be used;

• Low PWM frequency (48kHz):

o Small bandwidth (~4kHz);

o Input FF waveform optimization;

o Large jitter in synchronization;

PULSED SEPTA

H and V Fast Corrs (from FOFB)
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• Attempts with passive
shielding were not enough;

• FF using fast corrector magnets from FOFB 
(~20kHz bandwidth);

• FOFB PSs do not have waveform functionality
-> PS from SOFB correctors had to be used;

• Low PWM frequency (48kHz):

o Small bandwidth (~4kHz);

o Input FF waveform optimization;

o Large jitter in synchronization;
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Injection Perturbations: NLK Residual Field
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Injection Perturbations: NLK Residual Field

• Eddy currents from ceramic Ti coating → residual kick shape 
deformation and prolongation for several turns;

• Pulse-strength and timing are optimized to compensate combined 
effect of NLK residual field + eddy currents.

∼800 A

∼20 A

∼20 A
Effect of compensation, TbT data @ injection BPM

sx = 68 µm
sy =   9 µm

Beam size @ 
injection straight

Overall reduction of peak perturbation by
factor ∼60 in X and ∼18 in Y

• Cable from high-voltage PS to wires changed to coaxial cables to 
provide better shielding;

• Cancellation of residual field on-axis:
o Additional pairs of pulsed wires;
o Half-sine shape with 2.4 µs duration;
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Very Short-Term Stability (Turn by Turn – fRF/2)
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Injection Perturbations: NLK Residual Field
• Residual kick is well canceled by compensation wires for freqs < TbT;
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Injection Perturbations: NLK Residual Field
• Residual kick is well canceled by compensation wires for freqs < TbT;

• However, eddy currents distort residual kick shape (horizontal mainly);

• Hor. wire only cancels avg. of very large oscillation within one turn;

• A full-sine PS being designed to replace half-sine one used in hor. plane;

• Ongoing studies to use new coatings: thinner, strips, etc...;
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Collective Instabilities
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Collective Instabilities
• SR still operates with a PETRA 7-Cell cavity;

• Longitudinal HOMs -> beam unstable at 100mA;

• Stability recovered with:
o Longitudinal BbB feedback on;

o Cavity temperature detuning;

• SRF cavities will be installed in June 2024;

• Operation current will possibly increase to ~200 mA;

• No HOM driven instability expected;
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Collective Instabilities: Transverse Planes

• BbB-V On
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

170 nm

Average Spectrum RMS Over Bunches Coupled Bunch Modes Amplitudes

23



Collective Instabilities: Transverse Planes

• BbB-V Off
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

• BbB-V On
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

170 nm

Average Spectrum RMS Over Bunches Coupled Bunch Modes Amplitudes

170 nm

1,7 um

23



Collective Instabilities: Transverse Planes

• BbB-V Off
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

• BbB-V On
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

• BbB-V Off
• (Cx, Cy) = (3.8, 3.2)
• 1 Gap of 50 buckets

170 nm

170 nm

Average Spectrum RMS Over Bunches Coupled Bunch Modes Amplitudes

170 nm

1,7 um

23



Collective Instabilities: Transverse Planes

• BbB-V Off
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

• BbB-V On
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

• BbB-V Off
• (Cx, Cy) = (3.8, 3.2)
• 1 Gap of 50 buckets

• BbB-V Off
• (Cx, Cy) = (2.1, 1.0)
• 2 Gaps of 100 buckets

17,0 um

170 nm

170 nm

Average Spectrum RMS Over Bunches Coupled Bunch Modes Amplitudes

170 nm

1,7 um

23



Collective Instabilities: Transverse Planes

• BbB-V Off
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

• BbB-V On
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

• BbB-V Off
• (Cx, Cy) = (3.8, 3.2)
• 1 Gap of 50 buckets

• BbB-V Off
• (Cx, Cy) = (2.1, 1.0)
• 2 Gaps of 100 buckets

17,0 um

170 nm

170 nm

Average Spectrum RMS Over Bunches Coupled Bunch Modes Amplitudes

170 nm

1,7 um

Current Operation Mode

23



Collective Instabilities: Transverse Planes

• BbB-V Off
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling

• BbB-V On
• (Cx, Cy) = (3.8, 3.2)
• Uniform filling
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• (Cx, Cy) = (3.8, 3.2)
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• BbB-V Off
• (Cx, Cy) = (2.1, 1.0)
• 2 Gaps of 100 buckets
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Summary

• A few important subjects not addressed in this presentation:
o Effect of IDs on orbit: Feedforward with correctors as close as possible to ID and/or FOFB;
o Tune variation due to IDs and drifts: Currently is small, but feedback loop is planned;
o Effect of IDs on equilibrium parameters: Not observed with current IDs, but is priority for the 

near future;

• Efforts to improve long-term stability are being made. However, quantitative assessment is 
difficult. More interaction with beamlines needed;

• Good mid-term stability (<2% of beam size and energy spread), thanks to FOFB and improvements 
in LLRF control. However, mitigation of perturbation sources must be pursued;

• Short-term stability was largely improved, but still needs enhancements in both areas: septa leak 
field and NLK perturbations;

• Residual oscillations of collective instabilities must be improved and investigations regarding 
operation at higher currents must be carried out;
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Thank you for your attention!

Thanks also to Liu Lin, Murilo Alves and all my colleagues that helped putting this presentation together.
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