Elettra 2.0 Lattice and technical challenges

E. Karantzoulis

First 3rd generation light source in Europe for "soft" x-rays (*now also hard*) (DBA lattice, 12 fold symmetry), commissioned in October 1993 – > In 2023 celebrated 30 years of light.

Operating modes for users (all in top-up since 2010):

- Usually operates for about 6400 hours per year (24h, 7/7), 5016 hours reserved for users in 2 energies:
- 2.0 GeV, 7 nmrad, 310 mA for 75 % of users time with about 20 hours LT
- 2.4 GeV, 10 nmrad, 160 mA for 25 % of users time with about 33 hours LT
- 28 beamlines open to users— over 1000 user and user poposals / year
- Filling patterns: multi-bunch 95 % filling or hybrid, single bunch, few bunches or other multi-bunch fillings

I.FAST Low Emittance Rings workshop, Feb 13-16, 2024, CERN, Geneva

Although Elettra performs very well and is serving the user community with excellent results since 1994, in order to keep the light source competitive for synchrotron research and enable new science and new technology developments, a **diffraction limited** storage ring Elettra 2.0 will replace Elettra giving much smaller beam size and higher brilliance.

The Elettra 2.0 project is running and is fully financed since 2019 by the Italian government

- Gain in the emitted/transmitted signals from samples
- Reduced acquisition time for all types of spectroscopies and X-ray scattering techniques
- implementation of *photon-hungry techniques* (high pressure exps. with anvil cells and dilute samples, spin-resolved ARPES)
- improvement of the *lateral resolution* with focusing optics down to a few nm scale (e.g. nano-PES, nano-ARPES)
- Transversal (horizontal) coherence will open unique opportunities for coherence-hungry methods:
- Coherent Diffraction Imaging (CDI) with chemical specificity
- Ptychography
- •X-ray photon correlation spectroscopy (XPCS)
- Let open the possibility also for longitudinal coherence for time resolved experiments (fully coherent source)

Elettra 2.0 Design boundary conditions

□ Target:

Bare emittance

Conserve (increase) ID occupancy

Increase Intensity

Let open the possibility for bunch compression

e-beam energy(-ies)

✓ Reduce (achieved 47-fold)

- 30% (5 new spots for IDs)
- 🗸 400 mA @ 2.4 GeV
- crab cavities
- ✓ 2.4 GeV (and only initially also at 2 GeV)

Constraints:

Same building and circumference✓Conserve long SS-ID positions and length✓Reuse Injector✓Minimize beam off (dark time) period✓

259.2 m

- Conserve length to reuse IDs
- ✓ Off axis injection
- ✓ Reduce to less than 18 months

Choice of Lattice: beyond simple MBA

Elettra/N_b³

space in the arc

$$\alpha_{c} = 1.2 \times 10^{-4}, \ \sigma_{t,0} = 6 \ ps$$

$$\xi^{nat} / \nu = -2, -8$$

$$U_{0} = 620 \ keV, IDs \ included,$$

$$V_{RF}T_{tr} = 4 \times 0.5MV$$

I.FAST Low Emittance Rings workshop, Feb 13-16, 2024, CERN, Geneva

S6BA-E : Emittance 212 pm rad at 2.4 GeV

Machine parameters

Circumference (m)	259.2	259.2
Energy (GeV)	2	2.4
Number of cells	12	12
Geometric emittance (pm-rad) 2% coupling	148	212
Horizontal tune	33.27	33.27
Vertical tune	9.14	9.14
Beta functions in the middle of straights (x, y) m	(6.3, 1.7)	(6.3, 1.7)
Horizontal natural chromaticity	-73	-73
Vertical natural chromaticity	-67	-67
Horizontal corrected chromaticity	+1	+1
Vertical corrected chromaticity	+1	+1
Momentum compaction	1.3e-004	1.3e-004
Energy loss per turn no IDs (keV)	217	450 (w SBs 486)
Energy spread	7.7e-004	9.3e-004
Jx	1.625	1.625
Jy	1.00	1.00
JE	1.376	1.376
Horizontal damping time (ms)	9.8	5.7
Vertical damping time (ms)	15.9	9.2
Longitudinal damping time (ms)	11.6	6.7
Dipole field (T)	<0.88 + 1.16T central	<1.03+1.46T central
Quadrupole gradient in dipole (T/m)	<19	<22
Quadrupole gradient (T/m)	<50	<60
Sextupole gradient (T/m ²)	<3500	<4000
RF frequency (MHz)	499.654	499.654
Beam revolution frequency (MHz)	1.1566	1.1566
Harmonic number	432	432
Orbital period (ns)	864.6	864.6
Bucket length (ns)	2	2
Natural bunch length (mm, ps)	1.3 , 4.3	1.7, 5.7
Synchrotron frequency (kHz)	3.17 (@2MV)	2.86 (@2MV)

Elettra 2.0 Lattice in the tunnel

259 m circumference with 12 identical sectors and 12 long straight section for insertion devices. Elettra 2 will have also 12 short straight sections

Elettra

The Lattice is based on our developed enhanced symmetric sixbend achromat (S6BA-E) using DLQs and DQs (reverse-bends)

 Superessed/Essed/Essed/inforescopy

The lattice is 12-fold symmetric (24 arcs) with LS=5.104 m and SS=1.26 m (from magnet to magnet) this way the LSs coincide with those of the actual Elettra i.e. no radial shift of the IDs beam lines on the LSs.

I.FAST Low Emittance Rings workshop, Feb 13-16, 2024, CERN, Geneva

Elettra 2.0

B80 Nominal θy @ 24 GeV 4 Nominal θy @ 22 GeV 2	2.4 GeV	L1 T G=21T/m	L2 T G=0	L3 T G=21 T/m	Emittance pmrad
	VH-LG	0.77 T	2.16	0.77	140
1.4	H-LG	0.92 T	1.78	0.92	150
12 0 100 200 300 400 500 600 700 800	M-LG	1.036 T	1.46	1.036	177

Use of permanent magnets (Future). The joint project (VADER) with CERN, Elettra, KYMA and CIEMAT is financed from the EU (Horizon 2020 -Innovation Pilot Project for Particle Accelerators

Dimensions: 0.65 x 0.68 x 0.80 Weight: 1.5 T

caled By on the half trajectory [Tesla

From Elettra to Elettra 2.0

		Elettra	Elettra 2.0	Brilliance and coherent
Operating for users		1994-2025	2027-	fraction between the present
Beam energy	GeV	2.4 (25%) 2.0 (75%)	2.4 GeV (2.0 for some time)	and Elettra 2.0 Emittance reduction 47 times
Photon energies	keV	0.003-25	0.015 - 60	
e – emittance - coupling	nm-rad	10 7 - 1%	0.212 0.150 - 3%	
ID slots		11 Long + 1 short	11 Long + 5 short	
Beam lines (IDs, Dipoles)	#	28 (19, 9)	32 (25 3 IVU, 7 3 SB)	Brilliance increase factor at 2.4 GeV
e-beam size at LS (σx,σy)	μm	286,16	36,6	160
Brilliance (ph/s/mm²/mrad²/0.1%bw)		2X10 ¹⁹	10 ²²	bj 120 -
Coherence ratio at 1 keV	%	0.5	30	
e - intensity	mA	160 310	400	
Lattice -symmetry		2BA - 12 fold	S6BA-E(nhanced)-12 fold	
Fill patterns		multi-bunch, single or few bunch, hybrid	whatever	0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Photon energy (eV)

Elettra 2.0 beam size and divergence @3% coupling

	Long Straights	Short Straights
σ _x (um) / σ _x '(urad)	36 / 5.7	63 / 6
σ _v (um) / σ _v '(urad)	3.2 / 1.9	3.5 / 1.8

 \checkmark

Technical challenges (some)

- ✓ Small intra-magnet space-> lack of space (coils not protruding)
- ✓ Strong and combined magnets -> calibration
- ✓ Presence of reverse bends-> BBA
- ✓ Alignment on the girder-> consider cross talk
- Injector system reused, due to a smaller (3x) dynamic aperture -> emittance swap (beam too large for pulsed multipole and no space for aperture sharing)
- ✓ Shorter long straight sections and small beams separation -> septa disturbing during top up
- ✓ Users now require 5% or less of beam size variation-> many implications (ID field variations, feedbacks, etc)

A main challenge: Points of view of a Light source

For best results, Experiments, Beam lines and Machine people MUST closely interact. But even so the project went through some changes after many discussions especially due to the fact that users wanted almost everything...

prototype

prototype

		Elettra Sincrotrone Trieste	Field Error DIPC quad sextu octup QUA quad sextu octup	l errors is for 6 mm radius DE irupole pole and higher DRUPOLE irupole ipole pole and higher	Normal systematic T 3.00E-03 6.00E-04 3.00E-04 T/m 2.00E-04 2.00E-04	random 3.00E-04 3.00E-03 6.00E-04 3.00E-04 2.00E-03 1.00E-04 2.00E-04	Skew systematic 3.00E-03 2.00E-04 1.00E-05 2.00E-04 2.00E-04	random 3.00E-04 3.00E-03 2.00E-04 1.00E-05 2.00E-03 1.00E-04 2.00E-04	
pp 10 ⁻⁰⁴ 4	5.00 4.00 3.00 5.00 5.00 5.00 5.00 5.00 5.00 5	= 10 = 22 = 33 = 44 = 55 = 66 = 10 = 110 = 110 = 110 = 100 =	10 A 20 A 30 A 30 A 50 A 50 A 50 A 50 A 50 A 50 A 50 A 5	15.00 10.00 5.00 b3 a3 b4 -5.00 -10.00	4 b5 a5 b6 a6	b7 a7 b8 a8 b9	9 a9 b10 a10	 10 A 20 A 30 A 40 A 50 A 60 A 70 A 80 A 90 A 100 A 	100000 +60 n

Suspect: Electrical connections, pole's alignment but mainly it was Alu spacers After fixing connections and alignment and replacing the spacer material with iron the magnets

got it perfect (better than specified)

n	3	3	4	4
Current [A]	Normal %	Skew %	Normal %	Skew %
0.0	-0.583	0.090	0.006	0.014
10.0	-0.004	-0.002	-0.002	-0.001
50.0	0.006	0.000	-0.003	-0.001
100.0	-0.009	0.000	-0.003	-0.001
50.0	0.007	0.002	-0.005	0.000
10.0	-0.009	0.004	-0.006	0.001
0.0	-0.041	-0.005	0.066	0.047
	0.000	0.000	0.000	0.000

Looking to the experience of other light sources (ESRF-EBS and SIRIUS) even after careful correction of mechanical and electrical offsets of the BPMs the remaining offsets are in the range of 100 um rms. If we consider 100-150 um rms bpm offsets at 2 sigma cut there is a ~30-40% reduction of the DA that reduces the efficiency. Classical beam based alignment require nearby quadrupole magnet. For Elettra 2.0 this is the case for only 6 BPMs flanking the long straights. For the remaining 8 BPMs our solution is to use the corrector coils of the multipoles in skew quadrupole configuration, this way it is possible to bring the BPMs offsets with respect to the sextupoles to 8/4 um rms in horizontal/vertical plane.

Beam size change due to ID emittance change

Cumulative emittance change with IDs and SBs

% of emittance change for each type of ID from 0 to full field.

Considered 50 sets of random values for the undulators K value. Field values in each set vary from 50% to full field. Total beam size variation is less then 1% in all cases.

Off-axis injection

"Emittance swap" to achieve 100% efficiency, without swap i.e. use normal booster beam is 65%

On-axis injection possible (but of course no accumulation)

Momentum aperture $\sim \pm 3\%$ Lifetime 5 hours w/o 3HC

The stored beam is bumped by -6 mm and the injected beam is placed by -10 mm using the 3 septa. Beam separation 4 mm, pulse 3-5 us half sine wave for kickers, thin septum separation thickness 1 mm.

Septum S2 Disturbance during top-up

Specified <1 µrad to meet the 5%

-100

			Bump a	ixis deflection	ı		
						-	
						-	
	1.5E-06	1					Supermallow
	rad 1.0E-06	/					- AISI 1010
	0.0E+00 0.0E	+00 5.0	E-04 1.0	-03 1.5	-03 2.0	6-03	
			SI	20			
-							
			SR ax	is deflection			
			SR ax	is deflection			
			SR ax	is deflection			
			SR ax	is deflection			
			SR ax	is deflection			
	6.0E-06 5.0E-06 4.0E-06 3.0E-06 rad 2.0E-06		SR ax	is deflection			
	6.0E-06 5.0E-06 4.0E-06 3.0E-06 rad 2.0E-06 1.0E-06		SR ax	is deflection			
	6.0E-06 5.0E-06 4.0E-06 3.0E-06 rad 2.0E-06 1.0E-06 0.0E+00		SR ax	is deflection			
	6.0E-06 5.0E-06 3.0E-06 rad 2.0E-06 1.0E-06 0.0E+00 0.0E+00 0.0E+00	00 5.0	SR ax	is deflection	:03 2.0	 	

Thick septum magnets S1 and S2 @ 2.4 GeV		
Core length	510	mm
Hor and ver aperture	25 x 10	mm
Total deflection	8.0272 ¹	deg
Peak magnetic field (S1 – S2)	1.09 - 1.09	Т
Peak current (S1 – S2)	8.74 - 8.74	kA
Total inductance	2.6	μН
Circuit capacitance	120	μF
Current pulse duration	57	μs
Charging voltage (S1 – S2)	1.29 - 1.29	kV
Pulse repetition rate (assumed)	3.33	Hz
Total magnet power losses	142	W

Superconducting dipoles

Three beam lines at 35 and 50 keV and with flux above 10^{13} ph/sec will be constructed and will be served by 6 T SC-Dipoles (combined) to be installed after commissioning in sectors 4,8,12. Installation is expected from 2027.

> For the super-bends we opt for a C-shape magnet, technical specs done, call for tender end 2024.

Other technical challenges

NEG coating the light exits is really challenging - CERN collaboration

BPMs 14/achromat

Careful analysis for good measurements even at μ A level since we will be based on BPMs and not on FLS (space for only one)

Beam and wake on longitudinal axis (Xoffset = Yoffset = 0 mm). Charge: 1 nC SigmaRMS: 3 mm device length: 11 mm Wake Loss Factor: 3.846455e-03 V/pC Total Power extracted from the beam at 400 mA (MB): 1.23 W Wake Length: 1300 mm

Thank you for your attention

I.FAST Low Emittance Rings workshop, Feb 13-16, 2024, CERN, Geneva

Emanuel Karantzoulis

Element Type	Parameter	Value	Unit
	Δx	50	μm
Dipoles	Δy	50	μm
	Δz	300	μm
	Roll angle	100	μrad
	Δx	25	μm
	Δy	25	μm
Quadrupoles	Δz	300	μm
on the girder	Roll angle	50	μrad
	Δx	25	μm
Sextupole	Δy	25	μm
/multipoles on	Δz	300	μm
the girder	Roll angle	50	μrad
Course at our	Δz	300	μm
Correctors	Roll angle	150	μrad
	Δχ	150	μm
	Δy	150	μm
BPMs	Δz	300	μm
	Roll angle	150	μrad
	Δx	50	μm
	Δy	50	μm
Girders	Δz	300	μm
	Roll angle	100	μrad

Field errors	Normal		Skew	
Errors for 6 mm radius	systematic	random	systematic	random
DIPOLE	т	3.00E-04		3.00E-04
quadrupole	3.00E-03	3.00E-03	3.00E-03	3.00E-03
sextupole	6.00E-04	6.00E-04	2.00E-04	2.00E-04
octupole and higher	3.00E-04	3.00E-04	1.00E-05	1.00E-05
QUADRUPOLE	T/m			
quadrupole		2.00E-03		2.00E-03
sextupole	2.00E-04	1.00E-04	2.00E-04	1.00E-04
octupole and higher	2.00E-04	2.00E-04	2.00E-04	2.00E-04
SHIFTED				
QUADRUPOLES	T/m			
quadrupole		2.00E-03		2.00E-03
sextupole	3.00E-04	2.00E-04	3.00E-04	2.00E-04
octupole and higher	6.00E-04	6.00E-04	6.00E-04	6.00E-04
SKEW QUADRUPOLES	T/m			
quadrupole		3.00E-03		3.00E-03
sextupole	1.30E-01	1.00E-02	1.50E-01	2.00E-02
octupole and higher	2.00E-03	5.00E-04	2.00E-03	5.00E-04
SEXTUPOLES	T/m²			
dipole	1.00E-03	2.00E-04		
sextupole		2.00E-04		
octupole	2.00E-04	1.00E-04	2.00E-04	1.00E-04
higher multipoles				
(decapoles etc.)	1.00E-03	5.00E-04	1.00E-03	5.00E-04
OCTUPOLES	T/m³			
octupole		3.00E-04		
higher multipoles				
(decapoles etc.)	1.00E-03	5.00E-04	1.00E-03	5.00E-04