CSR effects in low-emittance electron storage rings

Demin Zhou (KEK) and Sara Dastan (Elettra)

Acknowledgements

T. Agoh, K. Bane, M. Blaskiewicz, A. Blednykh, Y. Cai, Y.-C Chae, R. Lindberg, S. Di Mitri, E. Karantzoulis, S. Kramer, K. Ohmi, Y. Papaphilippou, G. Stupakov

9th Low Emittance Rings workshop, CERN, Geneva, Switzerland, Feb. 13-16, 2024

Outline

- Theories of CSR driven microwave instability threshold
- CSR impedance calculation using CSRZ code \bullet
- Prediction of CSR instability via simulations
- Interplay of CSR, CWR, RW and geometric wakes \bullet
- Summary

• For an overview of CSR, See R. Nagaoka's talk in this workshop.

- Stupakov-Heifets (S-H) theory [1]
 - Beam becomes unstable when $(\pi R/(2h))^{3/2} \leq kR < 2\Lambda^{3/2}$. -
 - For Gaussian bunch, the theory is valid when $k\sigma_{\tau} \gg 1$ (coasting-beam approximation).
 - The S-H theory was translated to bunch current threshold [2]:

$$I_b > \frac{\pi^{1/6}}{\sqrt{2}} \frac{ec}{r_0} \frac{\gamma}{\rho^{1/3}} \alpha_p \delta_0^2 \sigma_z \frac{1}{\lambda^{2/3}}$$

- Improvements on S-H theory \bullet
 - Simulation of MWI with steady-state parallel-plates model of CSR impedance [3].

$$I_{\text{th1}} = \frac{4\pi (E/e)\eta \sigma_{\delta}^2 \sigma_z^{1/3}}{Z_0 \rho^{1/3}} S_{\text{th1}}$$

Simulation of MWI with steady-state rectangular-chamber model of CSR impedance [4].

[1] G. Stupakov and S. Heifets, PRST-AB 5, 054402 (2002).

[2] J. Byrd, et al., PRL 89, 22, Nov. 2002.

[3] K.L. F. Bane, Y. Cai, and G. Stupakov, Phys. Rev. ST Accel. Beams 13, 104402 (2010).

[4] Y. Cai, Phys. Rev. ST Accel. Beams **17**, 020702 (2014).

FIG. 1. (Color) The imaginary (Im) and real (Re) parts of the frequency ω as functions of $kR/\Lambda^{3/2}$, for a positive value of η . For negative values of k, the frequency can be found from the relation $\omega(-k) = -\omega^*(k)$ which follows from Eq. (9).

 $d\delta (d\rho_0/d\delta)$ $ir_0 cZ(k)$

$$S_{\text{th1}} \approx 0.5 + 0.12 \Pi$$

$$\Pi \equiv \sigma_z \sqrt{\rho/h^3}$$

З

- The case of absolute impedance Z(k)
 - An alternative way of extending S-H theory is to solve the dispersion relation numerically with $A = \Omega/(ck\eta\sigma_p)$ [1]:

$$-if(I_b)\frac{Z_{\parallel}(k)}{k}G(A) = 1$$

$$G(A) = \int_{-\infty}^{\infty} dp \frac{p e^{-p^2/2}}{A+p} \qquad f(I_b) = \frac{I_b}{2\pi (E/e)\eta \sigma_p^2}$$

- The impedance Z(k) can be obtained by analytical or numerical methods, including transient effects and/or chamber shielding.
- For the impedance Z(k), it is good to use data as a smooth function of k (broadband impedance).
- For CSR impedance in storage rings, the low-frequency part of Z(k) is mainly determined by chamber shielding, the highfrequency part is mainly determined by transient effects.

SuperKEKB DR (Design Ver. 1.210 with Vc=0.5 MV)

- The case of absolute impedance Z(k)
 - Further simplification of the dispersion-relation problem with threshold condition $Im[\Omega]=0$ [1]:

$$G(A) = \int_{-\infty}^{\infty} dp \frac{p e^{-p^{2}/2}}{A+p} = \sqrt{2\pi} + i\pi A e^{-\frac{A^{2}}{2}} \left[\text{sgn}[\text{Im}[A]] + i\text{erfi} \right]$$
$$\frac{G_{i}(A_{\text{th}})}{G_{r}(A_{\text{th}})} = \frac{Z_{r}(k)}{Z_{i}(k)} \qquad \frac{I_{\text{th}}}{2\pi (E/e)\eta\sigma_{\delta}^{2}\sigma_{z}} = \frac{kZ_{r}}{G_{i}(A_{\text{th}})(Z_{r}^{2}+E)}$$

- Application-1: Scaling law of Coherent Wiggler Radiation (CWR) instability in damping rings (only valid for positive η):

$$I_b^{th}(\lambda) \approx \frac{8\pi\sqrt{2\pi}(E/e)\eta\sigma_p^2\sigma_z}{LZ_0\theta_0^2\ln\frac{2k_w\lambda}{\pi\theta_0^2}}$$

This scaling law well explains the simulated CWR instability in the ring cooler for EIC.

FIG. 13. The functions $G_r(A_r)$ (blue line), $G_i(A_r)$ (red line), and $G_i(A_r)/G_r(A_r)$ (green line) with real A_r and positive η . The horizontal dashed lines indicate $G_i/G_r = \pm \sqrt{3}$.

- The case of absolute impedance Z(k)
 - Application-2: Scaling law of CSR instability with parallel-plates steady-state model [1]:

$$I_{\text{th2}} = \frac{4\pi (E/e)\eta \sigma_{\delta}^2 \sigma_z^{1/3}}{Z_0 \rho^{1/3}} S_{\text{th2}} \qquad S_{\text{th2}} \approx 0.384 \Pi^2$$

- This scaling law (first found by Y. Cai [2]) is valid when $\Pi \gg 0.5$. It suggests CSR threshold is proportional to $\gamma \eta \sigma_{\delta}^2 \sigma_z^{4/3}$, but independent of ρ [2].
- The linear scaling law of S_{th1} is an approximation of S_{th2} .
- Application-3: Scaling law of Resistive Wall (RW) instability [1]:

$$Z_{\parallel}^{\mathsf{RW}}(k) = \frac{f_Y Z_0 L_{\mathsf{RW}}}{\pi h \left(2\sqrt{\frac{iZ_0 \sigma_c}{k}} - ihk \right)} \qquad \qquad \chi = \frac{\sqrt{2Z_0 \sigma_c}}{hk^{3/2}}$$

$$I_{\text{th}} = \frac{2\pi^2 (E/e)\eta \sigma_\delta^2 \sigma_z (2Z_0 \sigma_c h)^{2/3}}{f_Y Z_0 L_{\text{RW}}} \operatorname{Min}[Y_{\text{th}}(\chi)] \qquad Y_{\text{th}}(\chi) = \frac{1}{G_{\text{i}}(A_{\text{th}})\chi}$$

- Min[$Y_{\text{th}}(\chi)$] ≈ 0.566 . The scaling law is valid when

 $\Pi_{\mathsf{RW}} \equiv \sigma$

[1] S. Dastan et al., to be published. [2] Y. Cai, IPAC2011, FRXAA01.

S_{th2}. stability [1]:

$$\sigma_z \left(\frac{Z_0 \sigma_c}{h^2}\right)^{1/3} \gg 0.73$$

CSR impedance calculation

- Impedance calculation based on parabolic equation
 - G. Stupakov, T. Agoh et al. developed the method of calculating CSR impedance using parabolic equation (PE).
 - The CSRZ code following this line to solve PE:

$$egin{aligned} &rac{\partialec{E}_{\perp}}{\partial s} = rac{i}{2k} \left[
abla_{\perp}^2 ec{E}_{\perp} - rac{1}{\epsilon_0}
abla_{\perp}
ho_0 + 2k^2 \left(rac{x}{R(s)} - rac{1}{2\gamma^2}
ight) ec{E}_{\perp}
ight] \ &E_s = rac{i}{k} \left(
abla_{\perp} \cdot ec{E}_{\perp} - \mu_0 c J_s
ight) \qquad Z(k) = -rac{1}{q} \int_0^\infty E_s(x_c, y_c) ds \end{aligned}$$

- CSRZ takes into account: Arbitrary curvature of beam orbit R(s) (CSR), finite beam energy γ (space charge effects, SC), and resistive wall (RW). The total impedance is not a simple sum of $Z_{CSR} + Z_{SC} + Z_{RW}$, but includes their interaction.
- CSRZ uses Gaussian charge distribution in x-y plane, assuming $\sigma_x > \sigma_y$. Self-field is calculated by Bassetti-Erskine formulae.
- Currently, CSRZ assumes uniform rectangular chamber referring to the beam orbit. -
- See [1] for an overview and [2] for details of CSRZ code.
- See [3,4,5] for recent applications.

[1] D. Zhou et al., "An Alternative 1D Model for CSR with Chamber Shielding", in Proceedings of IPAC'12, New Orleans, Louisiana, USA. [2] D. Zhou, Coherent Synchrotron Radiation and Microwave Instability in Electron Storage Rings, Ph.D. thesis, SOKENDAI and KEK, 2011. [3] G. Stupakov and D. Zhou, PRAB 19, 044402 (2016). [4] A. Gamelin, et al., NIM-A 999 (2021): 165191. [5] L. Carver et al., PRAB 26, 044402 (2023).

A single bend

A wiggler with "wiggling" chamber

CSR impedance calculation (cont'd)

- Examples of CSR impedance by CSRZ lacksquare
 - A single bend with varied length: w/h=30/15 mm, R=5 m, $L_{bend} = 0.5/2/8 \text{ m}.$
 - Black/Blue/Red/Green lines: Steady-state parallel-plates/L=0.5/ _ L=2/L=8 m. For convenience of comparison, the impedance amplitude is scaled to L=1 m.
 - "Short bend": Transient effect at the entrance and exit is important.
 - "Long bend": Excited eigenmodes of a toroidal chamber (or "whispering gallery modes" by R. Warnock [1]).
 - "Overtaking field": Short-range wake fields, space charge like.
 - "Trailing field": Long-range wake fields, relevant to excited eigenmodes.

CSR impedance calculation (cont'd)

- Examples of CSR impedance by CSRZ
 - A realistic ring with multiple-bends: assuming smooth chamber.
 - SuperKEKB DR as an example [1]: a/b=34/34 mm, L_{bend}=0.74/0.29 m, R=2.7/-3 m (reverse bends), L_{drift}=0.9 m, $N_{cell} = 1/6/16$.
 - Multi-bend interference: CSR fields generated by multiple bends propagate along the chamber together with the beam. The fields interfere to produce a pattern of "narrow-band spikes".
 - The real part of CSR impedance should correspond to SR spectrum in measurement.

[1] D. Zhou, et al., Jpn. J. Appl. Phys. 51 (2012) 016401.

- Check list before running simulations
 - Scaling law with PP-SS CSR model:

$$I_{\text{th2}} = \frac{4\pi (E/e)\eta \sigma_{\delta}^2 \sigma_z^{1/3}}{Z_0 \rho^{1/3}} S_{\text{th}}$$

- Critical wavenumber: $k_c = 3\gamma^3/(2\rho)$. Interaction distance of CSR: $z \gg 1/k_c$.
- Wall shielding threshold: $k_w = \pi \sqrt{\rho/(2h)^3}$. When $\sigma_z \ll 1/k_w$, wall shielding is not crucial; when $\sigma_z \gg 1/k_w$, wall shielding becomes important (according to $S_{\text{th1}} \approx 0.5 + 0.11 \sigma_z k_w$).
- NOTE: $\sigma_z \gg 1/k_w$ does not mean CSR is negligible. In theory, there always is a finite I_{th} for any $\sigma_z k_w$.
- Critical CSR wavenumber: $k_{\text{th}} = 2\sqrt{\rho/h^3} \sim 2k_w$. CSR around k_{th} determines the threshold current.
- Radiation formation length: $l_f = (24\rho^2 \sigma_z)^{1/3}$. For long magnet $l_b \gtrsim l_f$, transient effects are negligible; for short magnet $l_b < l_f$, transient effects become significant.
- Catch-up distance: $l_c = 2\sqrt{2\rho w}$ with w the distance from the beam orbit to the side wales and path difference $\Delta s = \frac{4}{3}\sqrt{\frac{2w^3}{\rho}}$. When $\Delta s \lesssim \sigma_z$, reflected CSR plays a role.
- Slippage length: $l_s = \eta \sigma_{\delta} C$. Lumping the CSR impedance of distributed bends into one point is valid only when $l_s \ll \lambda_{CSR}$.

\rightarrow Global picture h2

 \rightarrow Proper choices of Impedance models \rightarrow Proper setup of simulations

- Example-1: SuperKEKB LER
 - Step-1: Impedance modeling of CSR/CWR by CSRZ, RW by IW2D, and geometric wakes by GdfidL, CST, and ECHO3D [1].
 - Step-2: Instability analysis to determine $I_{th}(k)$.
 - Step-3: Choosing important parameters: maximum $k_{\rm max}$ for impedance model, minimum mesh size $\Delta z \ll 2\pi/k_{\rm max}$.
 - k_{max} =6 mm⁻¹ $\rightarrow f_{\text{max}}$ =286 GHz.
 - Note: Be careful in choosing filtering function to damp high-frequency impedances.

CSR is important source for MWI in SuperKEKB LER [1] T. Ishibashi et al 2024 JINST 19 P02013. Filtered impedance models underestimate MWI threshold

$h = 45 \text{ mm}, \rho = 74.7 \text{ m}$

- Example-1: SuperKEKB LER
 - Step-4: Run VFP simulations.
 - Different combinations of impedance sources: CSR sets MWI threshold
 - Different filtering functions for impedance model -
 - Step-5: Check consistency between theories and simulations.
 - "Numerical arts": Interpolation, smoothing histogram, mesh size, number of wake kicks per turn, mesh boundaries, cutoff of impedance beyond k_{max}, \dots
 - A good simulation should be well understood by a good theory

1.5

2

I (mA)

2.5

3.5

3

1.1

0

0.5

- Example-2: Elettra 2.0
 - Step-1: Impedance modeling of CSR by CSRZ, RW by IW2D, and geometric wakes by broadband resonator (BBR).
 - Alternative CSR models: CSRZ, PP, filtered PP

-
$$h = 7.5 \text{ mm}, \overline{\rho} = 7.8 \text{ m}$$

- BBR: $Q=1, f_r=7$ GHz, $R_s \approx 3000 \ \Omega (|\text{Im}[Z_{\parallel}]/n| = 0.5 \ \Omega [1])$

^[1] Elettra 2.0 TDR, Part three: Machine and Infrastructure.

- Example-2: Elettra 2.0
 - Step-2: Instability analysis to determine $I_{th}(k)$.
 - σ_{z0} =1.8 mm without harmonic cavity (3HC)
 - Step-3: Choosing important parameters: maximum k_{max} for impedance model, minimum mesh size $\Delta z \ll 2\pi/k_{\rm max}$.

-
$$k_{\text{max}}$$
=35 mm⁻¹ $\rightarrow f_{\text{max}}$ =1.67 THz.

CSR and RW re important source for MWI in Elettra 2.0

Filtered impedance models predicts higher MWI threshold

• Example-2: Elettra 2.0

- Step-4: Run tracking simulations (Elegant) and VFP simulations (Only consider CSR)
 - General consistency between theory, Elegant and VFP simulations.
 - 3HC increases MWI threshold through reducing charge density as expected.

simulations (Only consider CSR) d VFP simulations. charge density as expected

Example-2: Elettra 2.0 \bullet

- Step-4: Run tracking simulations (Elegant) simulations (Interplay of CSR, RW and BBR)
 - The (preliminary) results with 3HC seems to suggest that CSR is not a threat at Elettra 2.0.
- Step-5: Check consistency between theories and simulations.
 - benchmarks with VFP solver) are planned. Realistic geometric impedance model is preferred.

Comment from R. Lindberg: Elegant has difficulty when $k_r \sigma_z \leq 1$ (k_r : resonant frequency of BBR). Also true for VFP solver.

The results with BBR seems plausible. Further investigations (detailed calculations of geometric impedances and

Summary

- \bullet CSR in low-emittance electron storage rings.
- used to estimate MWI threshold.
- Care should be taken in simulations of MWI with high-frequency ($k\sigma_7 \gg 1$) impedances.
 - Play with "numerical arts".

- Not covered in this talk: \bullet
 - Narrow-band CSR impedance and its impact on MWI [1]
 - Accurate prediction of beam dynamics in the region well above MWI threshold

Analytic theories (S-H theory and its extensions) are useful for determining the significance of

• Calculated high-frequency ($k\sigma_7 \gg 1$) impedances (CSR, RW, and geometric impedances) can be

Backup

- Apply S-H theory to electron storage rings \bullet
 - Quick estimate of CSR instability.
 - Very useful in the design stage of a storage ring.
 - "Yellow region" indicates "severity of instability".
 - For rings where CSR is marginally of concern, MWI simulations are required.

Parameters	SuperKEKB DR ¹⁾	SLC DR ²⁾	ATF ³⁾	SuperKEKB LER ⁴⁾	SuperKEKB LER ⁵⁾	PEP-II LER ⁶⁾	ALS ⁶⁾	KEKB LER ⁷⁾
Circumference (m)	135.5	35.27	138.6	3016	3016	2200	196	3016
Energy (GeV)	1	1.21	1.54	4	3.5	3.1	1.5	3.5
Bending radius	2.43623	2.0372	5.73	15.87	15.87	13.7	4	15.87
Mom. compaction	3.43E-03	0.01814	2.17E-03	2.74E-04	2.74E-04	1.31E-03	1.41E-03	3.31E-04
Energy spread(10-4)	5.44	7.3	5.56	8.14	7.13	8.1	7.1	7.27
Bunch length (mm)	5.1	5.9	5	6	3	10	7	4.58
Bunch population (10 ¹⁰)	5	5	2	9.03	11.7	9.16	12.3	6.47
Pipe height@bends (mm)	34	15.6	24	90	90	50	40	94
Total bend. radius(2π) ⁸⁾	1	1	1	1	1	1	1	1

- 1) Design Version 1.140, Apr. 2010
- 2) SLC design handbook, Dec. 1984
- 3) ATF design and study report, KEK Internal 95-4
- 4) Nano-beam option design, Feb. 2008
- 5) High-current option design
- 6) G. Stupakov and S. Heifets, PRST-AB 5, 054402 (2002)
- 7) Machine operating parameters, Jun.17, 2009
- 8) Assumed

SuperKEKB DR (Design Ver. 1.140)

SuperKEKB LER (Design nano-beam option)

CSR impedance calculation (cont'd)

- Examples of CSR impedance by CSRZ
 - NSLS VUV as an example: a/b=80/42 mm, Lbend=1.5 m, R=1.91 m (Collaboration with S. Kramer)
 - Measured SR spectrum showed similar pattern of CSR impedance [6,8,10]. This is an evidence of multi-bend interference of CSR, or CSR in "whispering gallery modes".

CSR impedance calculation (cont'd)

- Examples of CSR impedance by CSRZ \bullet
 - CSR in a wiggler/undulator: Coherent wiggler/undulator radiation (CWR or CUR).
 - The CWR spectrum can be calculated analytically (for example, see Refs.[1,2]):

Re
$$Z(k) = \frac{4Z_0}{abR_0^2} \sum_{m=0}^{\infty} \sum_{p=1}^{\infty} \frac{k}{(1+\delta_{m0})k_z} \frac{\sin^2\left((k-k_z-k_w)L_w/2\right)}{(k-k_z)^2 - k_w^2}$$

- A weak wiggler: a/b=100/20 mm, $\lambda w=1$ m, R0=100 m, $N_{period}=10$
- Blue line by CSRZ; Red line by analytic theory with rectangular chamber; Green line by analytic theory in free space [3].

$$Z(k) = \frac{1}{4} Z_0 L_w k \frac{k_w}{k_0} \left(1 - \frac{2i}{\pi} \left(\log \frac{4k}{k_0} + \gamma_E \right) \right)$$

For storage-ring light sources or THz FELs, it might be ---interesting to look at the interference of CUR + SC + RW.

[1] Y. Chin, LBL-29981, 1990.

[2] G. Stupakov and D. Zhou, KEK Preprint 2010-43.

[3] J. Wu et al., Phys. Rev. ST Accel. Beams 6, 040701 (2003).

