

Energy calibration with resonant depolarization & beam tests at KARA

Bastian Haerer, E. Blomley, J. Gethmann, E. Huttel, J. Keintzel, J.L. Steinmann, F. Zimmermann

KIT – The Research University in the Helmholtz Association

www.kit.edu

Karlsruhe Research Accelerator (KARA)

- KIT synchrotron lightsource & accelerator test facility
 - until 2015 known as "ANKA"

Key parameters

- Circumference: 110.4 m
- Energy range: 0.5 2.5 GeV
- RF frequency: 500 MHz
- Revolution frequency: 2.715 MHz
- Beam current up to 200 mA
- RMS bunch length:
 - 45 ps (for 2.5 GeV)
 - down to a few ps (for 1.3 GeV)
- Single or multi-bunch operation
- TbT and BbB diagnostics

~ 50 days of machine physics per year

~ 50 days of machine physics per year

Synchrotron radiation spectrum similar to FCC-hh

BESTEX, 10.1103/PhysRevAccelBeams.22.083201

~ 50 days of machine physics per year

Synchrotron radiation spectrum similar to FCC-hh

BESTEX, 10.1103/PhysRevAccelBeams.22.083201

~ 50 days of machine physics per year

Synchrotron radiation spectrum similar to FCC-hh

EurCirCol

BESTEX, 10.1103/PhysRevAccelBeams.22.083201

Task 2.5: Polarisation and energy calibration

- Energy measurements with highest possible precision required for FCC-ee
 - \rightarrow Resonant Spin Depolarisation
- Setup available at KARA

Electron beam polarisation

$$\tau_p = (w_{\uparrow\downarrow} + w_{\downarrow\uparrow})^{-1} = \frac{8\sqrt{3}}{15} \frac{m_0^2 c^2}{e^2 \hbar} \frac{\rho^3}{\gamma^5} \cdot 4\pi\varepsilon_0$$

KARA, 2.5 GeV: ~ 9 minutes

Less likely

FCC PHYSICS WORKSHOP 01 FEB 2024

Electron beam polarisation

Asymmetry in the spin-flip probability due to emission of synchrotron radiation leads to spin polarisation over time:

$$\tau_p = (w_{\uparrow\downarrow} + w_{\downarrow\uparrow})^{-1} = \frac{8\sqrt{3}}{15} \frac{m_0^2 c^2}{e^2 \hbar} \frac{\rho^3}{\gamma^5} \cdot 4\pi\varepsilon_0$$

KARA, 2.5 GeV: ~ 9 minutes

Electron beam polarisation

Asymmetry in the spin-flip probability due to emission of synchrotron radiation leads to spin polarisation over time:

$$\tau_p = (w_{\uparrow\downarrow} + w_{\downarrow\uparrow})^{-1} = \frac{8\sqrt{3}}{15} \frac{m_0^2 c^2}{e^2 \hbar} \frac{\rho^3}{\gamma^5} \cdot 4\pi\varepsilon_0$$

- KARA, 2.5 GeV: ~ 9 minutes
- Spin vector precedes in presence of electric and magnetic fields.
- Spin tune: number of precessions per turn

 $\nu = a\gamma$

$$a = (g_e - 2)/2 = 0.001159652193$$

 $\gamma = E_{beam}/m_0 c^2$

Resonant spi

- \square TIONZONIAIES MAGNELIEIU U_{χ} , MOUUNELLINIL TB, WITU EING
 - → Resonante Depolarisation bei $f_s = f_B \Rightarrow E_0$
 - → Präzision: $\Delta E/E \approx 10^{-5}$
- Resonante Spin-/Polarisationsvektorrotation f
 ür $\nu = n$ -

RSD measurement technique at KARA

Measurement analysis

Change in Touschek lifetime because Møller scattering is dependent on polarization

 \rightarrow Change in loss rate visible at depolarization frequency

Goals of the measurements at KARA

- Impact of scan velocity
- Impact of scan direction
- Impact of beam intensity
- Energy drifts
- Polarization level
- Beam optics and orbit

First beam time 30/10 & 31/10/2023

Karlsruhe Institute of Technology

Beam set up

2.5 GeV beam energy
~ 30 bunches, one train
30 to 60 mA beam current

Low closed orbit

JACQUELINE KEINTZEL POLARIZATION STUDIES AT KARA

Polarization time

Scan quality depends on polarization time \rightarrow 20 minutes between measurements

• Beam energy measured to about **2.481 GeV** (-19 MeV with respect to 2.5 GeV)

Moving average over three values of the loss rate to reduce numerical uncertainties

Scan velocity

Scan velocity and scan direction

- Scanning range: <u> 1705 – 1725 MHz</u> JACQUELINE KEINTZEL POLARIZATION STUDIES AT KARA Corresponds to: 2.4795 - 2.4830 GeV Scan duration: 100 – 600 s
- Reversed scanning direction

Scan velocity and scan direction

Blue: 1705 – 1725 kHz Red: 1725 – 1705 kHz

Courtesy: J. Keintzel

Scan velocity and scan direction II

Blue: 1705 – 1725 kHz Red: 1725 – 1705 kHz

Courtesy: J. Keintzel

Energy drift over 16 h

Blue: 1705 – 1725 kHz Red: 1725 – 1705 kHz

Courtesy: J. Keintzel

Second overnight measurement campaign of 34 RDP scans

FCC PHYSICS WORKSHOP 01 FEB 2024	JACQUELINE KEINTZEL POLARIZATION STUDIES AT KARA	19 O FUTURE CIRCULAR COLLIDER		
Trend visible for both scanning directions with different velocities				
Sources to be in	C.			

Orbit drifts during 16 h (one fill)

Cannot (fully) explain energy drifts, since energy drift has linear trend

Status of measurements at lower energies

- Challenges encounterd at 2.3 GeV
- No resonance measured so far.
- Could be critical since non-integer part .220 is close to our betatron non-integer tunes.
- At 2.5 GeV: low emittance optics (dispersion leak in all sections) Lower energies: achromatic optics (higher emittance and less Touschek)

To be continued ...

	Energy (GeV)	Spin tune	Pol. time (s)	(min)	Depol. freq. (MHz)
•	2.5	5.673	567	9.4	1.74
	2.4	5.446	675	11.2	1.21
	2.3	5.220	835	13.9	3.31
	2.2	4.993	1042	17.4	2.70
	2.1	4.766	1316	21.9	2.08
	2.0	4.539	1679	28.0	1.46
	1.9	4.312	2170	36.2	3.56
	1.8	4.085	2843	47.4	2.95
	1.7	3.858	3784	63.1	3.56
	1.6	3.631	5124	85.4	1.71
	1.5	3.404	7075	117.9	1.10

Summary

First RSD measurements in context of FCCIS performed at KARA

- Nominal beam energy 2.5 GeV
- Measured beam energy ~19.3 MeV lower for all scans
- RSD scans focusing on scanning direction and scanning speed
 Energy drift observed during long-term measurements
 Energy drift is independent of scanning speed and direction
- Measurements at lower energies need more attention

New BLMs as counters for scattered electrons in commissioning

Outlook

Example: Diamond LS Phys. Rev. Accel. Beams 22, 122801, 2019

Spin matching with vertical orbit bumps

JACQUELINE KEINTZEL POLARIZATION STUDIES AT KARA

Thank you for listening!

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.