

SUSTAINABILITY PROJECTS FOR BESSYIII

Decreasing the footprint for a new SR facility

Jens Völker 9th LER workshop 2024 CERN

BESSYIII

PTB/BAM metrology applications

-> Metrology source Homogenous bends Variation of Magnetic field at source point (10x10x10mm3) <1 unit

Option for one Superbend per arc as hard X-ray source

Green field option (BESSYIII / BESSYII): 40% larger circumference 48% higher beam energy 66% higher beam current >100% larger building complex

Goal for power consumption: over all power for BESSYIII equal or less than BESSYII !

J. Völker Low Emittance Rings - CERN - 2024-02-15 - 02 -

POSSIBLE ADJUSTMENTS IN THE CONSTRUCTION PHASE

material-optimized construction

e.g. use of carbon concrete to save concrete, which must have minimum coverings to protect the conventional reinforcing steel from corrosion

• optimized construction shape

optimize shape and cross section of the ground plate for high stiffness and vibration dampening, but less concrete

-> different cross sections and material distributions to minimize concrete

J. Völker Low Emittance Rings - CERN - 2024-02-15 - 03 -

Example: Cube in Dresden - the world's first building made of carbon concrete (from: www.bba-online.de/news/cube-neues-bauen-mit-carbonbeton/#slider-intro-1)

Comparison reinforcing carbon and steel (from https://www.carbocon.de)

POSSIBLE ADJUSTMENTS IN OPERATION PHASE USE OF PHOTOVOLTAICS

Energy generation of the building

- Energy-harvesting potential by PV-skin: 1–3 GWh/a •
 - Assuming a realistic improvement in PV efficiency of around 10%:

3 GWh/a

PV-facade study

- -> 360 commercial solar modules
- -> installed on three sides of the building
- -> 28 MWh per year
- -> 120 measurements points and sensors und

Accelerator Running Costs

RF-components

500MHz Cavities at BESSYII

Magnet system PM Bending magnet for BESSYIII Magnet setup of an unit cell for BESSYIII (4 of 7 magnets are PM)

PM Triplet for BESSYII to replace a 20kW dipole

RF 2.0 Project (EU Horizon 2023/2024) "Research Facility 2.0"

PM Workpackage 2.2 partners: **ALBA, Commtia, Cryoelectra, HZB** main topics:

⇒ prototyping of optimized Solid State Amplifier (SSA) systems by changing the operational parameters of RFtransistors for 1.5 GHz (ALBA) and 500MHz (HZB)

 \Rightarrow for highest efficiency under varying load conditions

SSA ALBA+HZB by Commtia + Cryoelectra

- -> adaptive adjustment of the amplifier's compression point for maximum efficiency at variable RF output levels
- -> an appropriate interface from the accelerator control system to SSA
- -> design of an Active Parametrization Digital Control (APDC) for a 1.5GHz SSA
- -> Non Linear Solid State Amplifier Board for a 1.5GHz

Courtesy A. Matveenko (HZB)

This project has received funding from the European Union's Europe research and innovation program under grant agreement **No 101131850**

RF 2.0 Project (EU Horizon 2023/2024) "Research Facility 2.0"

- By adjusting the bias point, the efficiency can be optimized for lower output powers
- Setting the right bias point dynamically requires intricate knowledge of the whole amplifier system
- This process shall be automated by the proposed control algorithm to make the
 efficiency improvements usable by the accelerator's operator

Courtesy B. Nordmann (Cryoelectra)

MAGNETS OVERVIEW

Quadrupoles Homogenous bends Reverse bends Sextupoles										
	Dipole	Quadrupole	Reverse Bends	Sextupole						
Field/gradient (def. Limits)	0.6-0.8 T (1.3 T)	50-90 T/m (80 T/m)	80 T/m and (0.18-0.22) T (30 T/m and 0.8 T)	<4000 T/m² (4000 T/m²)						
Quality	$0.1 \cdot 10^{-4}$	$\sim 1 \cdot 10^{-4}$	$\sim 1 \cdot 10^{-4}$	tbd						
Stability	$<1 \cdot 10^{-4}$									
Variation	-	10%	5%	100%						
Power consumption (PM / electro)	0 kW / 290 kW	<50 kV	>100 kW							

min. aperture radius for all magnets: 12.5mm

- 1. Strong magnetic fields
- 2. High field Quality
- 3. Stable field operation
- -> high magnetic field energy / electric power
- -> high mechanical and alignment precision
- -> minimization of ripple and vibrations
- 4. Small parameter Variation -> constant magnet operation next to design value

J. Völker Low Emittance Rings - CERN - 2024-02-15 - 08 -

RF 2.0 Project (EU Horizon 2023/2024) "Research Facility 2.0"

- -> PM driven QP magnet with CoFe Pole Shoes (gradient up to 120T/m)
- -> Pole Shoe Tip and chamfer are numerical optimized to maximize b2 (quadrupole) and to minimize central and/or integrated b6, b10 and b14

-> up 24 tuning plates (10mm thick CoFe) will be installed in parallel to PM blocks -> position of plates reduces the max. magnetic flux (short circuit)

- -> the plates are mechanical connected
- -> position inside yoke can be changed via motors (slow)
- -> field strength can be reduced by approx. 40% ($\sim 0.5\%$ /mm) (or $\pm 20\%$ to operating point)

PM based Magnets

Resistive Magnets

wme

Fabrication costs e.g. PM blocks

Н

GWP parameter for nearly all materials:

-> mining, concentration, purification, refining

-> PM fabrication processes have to concisder separately

(A) Global warming Potential (kg CO ₂ -eq/kg)											0.9						
Li 7.1	Be 122	Lowest Highest									B 1.5	C	N	0	F	Ne	
Na	Mg 5.4	Al Si P 8.2								Р	S	CI	Ar				
К	Ca 1.0	Sc 5,710	Ti 8.1	V 33.1	Cr 2.4	Mn 1.0	Fe 1.5	Co 8.3	Ni 6.5	Cu 2.8	Zn 3.1	Ga 205	Ge 170	As 0.3	Se 3.6	Br	Kr
Rb	Sr 3.2	ү 15.1	Zr 1.1	Nb 12.5	Mo 5.7	Тс	Ru 2,110	Rh 35,100	Pd 3,880	Ag 196	Cd 3.0	In 102	Sn 17.1	Sb 12.9	Te 21.9	1	Xe
Cs	Ba 0.2	La-Lu*	Hf 131	Ta 260	W 12.6	Re 450	Os 4,560	lr 8,860	Pt 12,500	Au 12,500	Hg 12.1	TI 376	Pb 1.3	Bi 58.9	Ро	At	Rn
Fr	Ra	Ac-Lr**	Rf	Db	Sg	Bh	Hs	Mt									

Pm

Nd

17.6

U

90.7

La

11.0

Ac

*Group of Lanthanide

**Group of Actinide

Ce

12.9

Th

74.9

P

19.2

Pa

Sm

59.1

Pu

Eu

395

Am

Gd

46.6

Cm

Tb

297

Bk

Dy

59.6

Cf

Ho

226

Es

Er

48.7

Fm

Yb

125

No

Tm

649

Md

Lu

896

Lr

Clabel Wenning Determined // - CO

/1 \

Cumulative Energy Demand:

Freshwater Eutrophication:

BUT:

several databases (countries, technology, etc.) with extremely different values! e.g. NdFeB GWP:

B. Sprecher^[1]: 21-41kg CO₂-eq *NEOHIRE D5.4 Report*^[2]: 89kg CO₂-eq *I.B.Fernandes*^[3]: 25-150kg CO₂-eq

PM material 1 kg	GWP CO ₂ -eq	Energy MJ-eq	Freshwater eutrophication kg P-eq	Human Toxicity CTUh	
Nd ₂ Fe ₁₄ B	5.79	108.8	0.0023	2.51E-06	
SmCo₅	25.46	476.7	0.0104	1.18E-05	
Sm2Co17	20.03	366.3	0.0084	9.39E-06	

https://www.magreesource.org/

https://www.iwks.fraunhofer.de/en/competencies/MagneticMaterials/Recycling.html

MAGNET LCA

SUMMARY

- -> construction work has most impact for initial GWP-> optimize material consumption
- -> decrease running costs
- -> install direct energy production
- -> clarify material sources to minimize GWP-> Recycling?

BUILDING INDUSTRY OPERATIONS 30% **Global CO**₂ 28% Emissions TRANSPORTATION by Sector 22% BUILDING MATERIALS & CONSTRUCTION OTHER 9% 11% DATA SOURCE: ARCHITECTURE 2030 https://www.architects.org/news/the-new-net-zerg

[1] B. Sprecher, "When materials become critical : lessons from the 2010 rare earth crisis" (2016)

[2] NEOHIRE, DELIVERABLE D5.4, "Report on comparative LCA&LCC for NdFeB Permanent Magnet manufacturing processes" (2019)

[3] I. B. Fernandes, "Simulation-Based Exergetic Analysis of NdFeB Permanent Magnet Production to Understand Large Systems" (2020) https://doi.org/10.1007/s11837-020-04185-6

[4] Nuss et al. "Life Cycle Assessment of Metals: A Scientific Synthesis" 10.1371/journal.pone.0101298