

Accelerator Impact Report: RUEDI

Katie Morrow, ASTEC Daresbury Laboratory Group members: Ben Shepherd, Alan Wheelhouse, Anthony Gleeson, Gary Hughes, Storm Mathisen, Hywel Owen, Andrew Vick.

Gary Hughes Facilities

Storm Mathisen Diagnostics

Andrew Vick Vacuum

Katie Morrow Lasers

Ben Shepherd Alan Wheelhouse MaRS RF 9th IFAST LER Workshop 2024

Anthony Gleeson **Business**

An Introduction to RUEDI

Currently in TDR phase Produces MeV electron energies

Goals of LCA

- Understand in each area what are the largest sources
 - What to focus on and not focus on
- Start to look at mitigation strategies
- Developing the tools to do this type of analysis for the future

Magnets

Power consumption

- Estimated from magnet design properties
- Only lenses cooled increasing power by 35%
- Carbon emissions dominated by the power consumption
- Aperture size particularly important for reducing impact, followed by current density

Total: 20 tonnes of CO₂e per year 6x manufacturing carbon footprint!

9th IFAST LER Workshop 2024

Prioritise efficiency for lenses and solenoids, as well as turning off when not in use! The carbon intensity of electricity in 2030 - 2040: 77.4 gCO2e/kWh

Energy per year [MWh]

Laser and Timing system

Laser and Timing system

Manufacturing

- Aluminium = housing of laser units and breadboards
- Steel = vacuum vessels and optical tables
- Assumed aluminium and steel is from China 20 CO₂e/kg
- European aluminium: 6.7 kg CO₂e/kg, Mexican steel: 1.08 kg CO₂e/kg
 3
- Can reduce by 18 tonnes, or 44% by ensuring aluminium and steel come from 'greener' countries or even better... recycled sources

39 tonnes of CO₂ equivalent to:

Laser and Timing System

Power consumption

- 57% from chillers
- Water cooled > air cooled
- Cryogenic cooling? 25 30% laser conversion efficiency boost
- Ytterbium based systems = 50% more energy available from diodes but very expensive

Total: 46 tonnes of CO₂e/year

RF systems: Materials impact

- RF system:
 - 1 x RF photoinjector gun, transverse deflecting cavity
 - 2 x modulators, klystrons and solenoids
 - 3 x cavities
 - 4 x solid state amplifiers and LLRF systems
- Items such as modulator and LLRF system material breakdown estimated
- Suppliers often cannot give sources of their materials so averages have been assumed
- Single material items (cavities and waveguides) better choices could potentially be made

9th IFAST LER Workshop 2024

Total: 7.5 tonnes of CO₂e

10

RF system

Power consumption

- Using our knowledge of losses, and the power needed for other components, the power of the modulators was estimated.
- Photoinjector efficiency = 0.003%!
- Higher current machines are more efficient
- Good cavity design can also help improve
 - Waveguide to cavity efficiency improved through iris coupling optimisation¹
- Highly efficient RF sources talk after discussion by Igor Syratchev!

9th IFAST LER Workshop 2024

tonnes of $CO_2e/year$

Diagnostics and controls

D&L

- Many companies starting to release impact reports!
- Assumed more complicated components (ie oscilloscopes, processing crates) similar impact scaled by size
- Scaled numbers based on CLARA
- Electricity far more impactful over lifetime
- Utilise low power mode and turning components outside of operation (idle mode = 1/10 energy usage)
- Code efficiently

Vacuum

- Most systems need 8x10⁻⁹, TW and IR lasers only need 10⁻⁷
- One differential pumping line for gasbased laser systems

7.45

6

Turn off backing pumps as soon as possible

Consider NEG pumps and coatings

9th IFAST LER Workshop 2024

YAG stations, beampipes, and sample and detector stations all 100% stainless steel.

Item	Amount			
Small turbos	10			
Big turbos	23			
Flanges	180			
Beampipes	48 metres			
Sample and detector chambers	6			
YAG stations	18			
lon pumps	35			
Scroll pumps	6			
Backing pumps	15			

Total: 137 tonnes of CO₂e

Shielding

Without reuse of floor slab, total: 284 tonnes of CO₂e

- 927 tonnes of concrete for 20 m by 4.5 m
- RUEDI reuses existing building, and floor slab
- Use more shielding closer to the source
- Consider different types of concretes?
 - STFC's EPAC reduced emissions by 50% using mostly GGBS instead of PC
- Concrete can last 30 years or more = REUSE!
 - Need standardised sizing and suitable persistent documentation

14

Cooling infrastructure

- Everything produces heat!
- 11 AHU needed for AC, assumed to be about 70% steel and 30% copper
- Everything else assumed stainless steel
- Variable speed drivers for AC and using motion sensitive LEDS help reduce Diamond electricity by 20%
- Using cold winter air = 75% reduction in electricity
- Ground water cooling

9th IFAST LER Workshop 2024

Heat

0.5

3.1

Total material impact: 23.4 tonnes of CO₂e

Total electricity impact: 58.7 tonnes of CO₂e/year 15

User and staff travel

- RUEDI is a national facility so mainly UK travel
- Travel is a key part of science, particularly for early careers
- Prioritise low-carbon transport despite costs
- Offer 'sample by post' for standardised experiments

Mode of transport	Estimated number of trips	Carbon intensity [kgCO ₂ e/km]				
Train	40	0.013				
Car: petrol/diesel	30	0.164				
Car: electric	30	0.010				
Plane: short-haul	6	0.183				
Plane: long-haul	3	0.200				

Overview

Over a decade operations dominate: this should be our focus

Particularly: magnet lenses (use quads and PM?), reusing waste heat, using variable drive for as few chillers as possible, and explore demand shifting

- Reusable shielding and investigating other concrete grade
- Submetering! Helps us make retrofit decisions

Reusable	RUEDI: 1732 tCO2e									
shielding and	Operations (ten years): 1478 tCO ₂ e							Materials (inc shielding): 254 tCO ₂ e		
investigating	Heating	ʒ/cooling: 624 tCO₂e	Magnets: 204 tCO₂e		Laser: 170 tCO₂e					
other concrete grade	Air handling units		Lons (diffraction	Lens (imaging line)	Other	Cryo chiller (Cryo MPA)		Chillers (Rege and MPA0 amplifiers)	Shielding	
Submetering!			Chiller	line)	Other				Backing pump (TW)	
Helps us make retrofit decisions			e	Gun solenoid magn	Vacuum: 150 tCO ₂ e Cor		Contro	ols: 96 tCO₂e		
			Travel:	Travel: 186 tCO ₂ e				Oscilloscope		
		Pumps			Backing pump (ump (laser)	ing	Rack- mount Othe	r Laser	
			Long-haul flights				crate	ed ls	o Heating/coolin	
Science and Technology Facilities Council				Long-haul flights	Long-haul flights Other travel		RF		48 tCO₂e	Vacuum
					Backing C pump (SC) va	Other Icuum Ph	hotoin	jector Dechirg	Control S Others	
9 th IFAST LER Workshop 2024										

Other STFC activities

- Haven't mentioned all the other labs a facility like this might need to run!
 - Currently trying to encourage lab managers to conduct energy use assessments as well as doing this for our current facility
- Joint STFC/IET PAEN workshop at ESA, Harwell Campus 23rd May: keep an eye on IET website for details
- Undergoing sustainability assessment of UKXFEL
- Sustainable accelerator website in development!

Thank you

Any Questions?

Link to report: https://www.astec.stfc.ac.uk/Pages/Sustainable-Accelerators-Task-Force-Report-.aspx

Facebook: Science and Technology Facilities Council Twitter:@STFC_matters

YouTube: Science and Technology Facilities Council