
ML approaches for the operation of the CERN accelerator complex

V. Kain, N. Burchon, A. Calia, L. Felsberger, J.C.
Garnier, R. Gorbonosov, M. Hostettler, A. Huschauer,
F. Irannejad, D. Jacquet, N. Madysa, B. Rodriguez
Mateos, K. Papastergiou, C. Petrone, M. Remta, M.
Schenk, M. Sobieszek, G. Trad, F. Velotti, J. Wulff

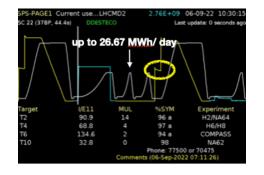
LHC and non-LHC physics

Not only LHC physics! \rightarrow Many different beam types, production schemes,...

Screenshot from recent Chamonix CERN Accelerator Performance workshop

Why AI/ML for CERN accelerators? Examples...

Summary talk CERN Injector and Experimental Facility Workshop (IEF) '21


2. Address reproducibility and availability

- Availability OK, under control of Groups. **Reproducibility** is critical concern with increasing flexibility and multi-destination operation
- Transmission problems and instability in beam delivery in many locations.
 "Need more time in 2022"→have to ensure this is there (add in schedule?) #A
- Addressing reproducibility relies on many factors including equipment, accelerator modelling and high-level controls approach

Input from CERN Joint Accelerator Performance Workshop'22

 \rightarrow Hysteresis is severe limitation for efficiency and flexibility in most machines, current mitigation methods wasting energy

 $\ast~$ ~ 15 % of yearly cost of SPS fixed target cycle for "waste" cycles and quasi-degauss Cycle MD1

Efficiency Think Tank (ETT): Oct '22 - Mar '23

ETT = Body for brainstorming for strategy definition for more efficient CERN accelerator exploitation

Response to Injector and Experimental Facility Workshop 2021 concerns with efficiency and reproducibility

- * large extended team for community discussions, small core team to synthesise directions
- Wide range of efficiency topics touched
 - * shorter turn-around, more flexibility, energy efficiency,...
- Key target areas identified
 - * <u>7 high priority recommendations</u>
- \rightarrow CERN accelerator sectorwide project to implement recommendations
 - * Efficient Particle Accelerators (EPA) project: 5 year project \rightarrow improvements ready for HL-LHC

7 recommendations \rightarrow Automating exploitation

CERN Esplanade des Particules 1 P.O. Box 1211 Geneva 23 Switzerland	EMDS NO.REV.VALIDITY29225141.0RELEASED			
CERN	REFERENCE 2922514			
	Date: July 28, 2023			
PROJECT REPORT				
Efficiency Think Tank Report				

- 1. Hysteresis compensation
- 2. Automatic and dynamic beam scheduling
- 3. Automatic LHC filling
- 4. Auto-pilots
- 5. Automatic fault analysis, recovery and prevention
- 6. Automatic testing and sequencing
- 7. Automatic parameter optimisation

7 recommendations \rightarrow Automating exploitation

CERN Esplanade des Particules 1 P.O. Box 1211 Geneva 23 Switzerland	EMDS NO.REV.VALIDITY29225141.0RELEASED				
CERN	REFERENCE 2922514				
	Date: July 28, 2023 PROJECT REPORT				
Efficiency Think Tank Report					

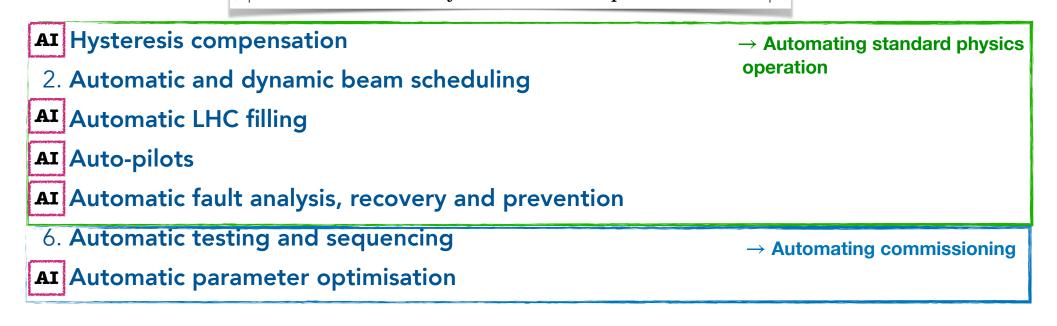
 1. Hysteresis compensation
 → Automating standard physics operation

 2. Automatic and dynamic beam scheduling
 → Automating standard physics operation

 3. Automatic LHC filling
 →

 4. Auto-pilots
 →

 5. Automatic fault analysis, recovery and prevention
 →


 6. Automatic testing and sequencing
 → Automating commissioning

 7. Automatic parameter optimisation
 →

7 recommendations \rightarrow Automating exploitation

CERN Esplanade des Particules 1 P.O. Box 1211 Geneva 23 Switzerland	EMDS NO. REV. 2922514 1.0 R	VALIDITY	
CERN	REFERENCE 2922514		
	Date: July 28, 2023 PROJECT REPORT		
	Think Tank Report		

The waves of automation @ CERN

The current automation efforts are based on three threads

- Automation wave 1 (2006)
 - * reduce complexity through models (LSA)
 - * high level parameter control, sequencers, software interlock system, classic control algorithms in feedforward and feedback (SVD, COSE,...)

CERN

The waves of automation @ CERN

The current automation efforts are based on three threads

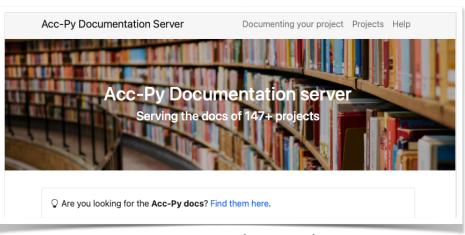
- Automation wave 1 (2006)
 - \ast reduce complexity through models (LSA)
 - * high level parameter control, sequencers, software interlock system, classic control algorithms in feedforward and feedback (SVD, COSE,...)
- Automation wave 2 (2018)
 - $* \rightarrow$ provide clever solutions if models are not available. E.g. Learn them...
 - \ast Python into the control room
 - * Optimisers, ML...on demand

CERN

The waves of automation @ CERN

The **current** automation efforts are based on three threads

- Automation wave 1 (2006)
 - * reduce complexity through models (LSA)
 - * high level parameter control, sequencers, software interlock system, classic control algorithms in feedforward and feedback (SVD, COSE,...)
- Automation wave 2 (2018)
 - $* \rightarrow$ provide clever solutions if models are not available. E.g. Learn them...
 - \ast Python into the control room
 - * Optimisers, ML...on demand
- Automation wave 3 (2021)
 - $* \rightarrow$ close the loop
 - * frameworks (Generic Optimisation Framework (GeOFF), Machine Learning Platform)
 - * auto-launch correction, auto-resets, auto-analysis
 - $* \rightarrow$ auto-pilots


Acc-Py - Python for CERN accelerators

Python distribution fully integrated with control system:

- Equipment access: pyjapc → pyda, next: event building
- Access to settings and archived data
- GUI framework

Acc-Py package repository and centrally managed deployment

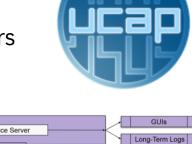
acc-py.web.cern.ch

Low Emittance Rings workshop, V. Kain, 15-Feb-2024

UCAP

Unified Controls Acquisition and Processing ("Virtual Device Service") \rightarrow servers on-the-fly in JAVA or Python

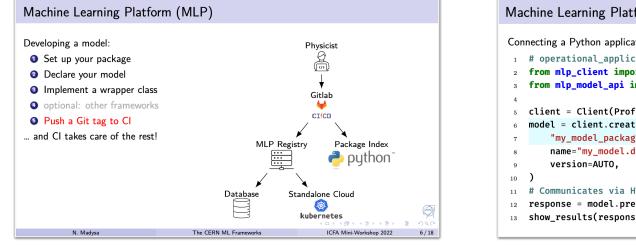
- → Plug&Play framework for analysis (UCAP transformations)
- \rightarrow continuously running in the background, triggered by "events "


Provides:

- tools for development, test and deployment of "transformations" (+actors)
- infrastructure to run transformations no servers to buy; new: UCAP node with GPUs

Key features:

 \rightarrow event building (e.g. buffered data,...)

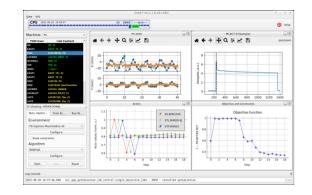

 \rightarrow others can subscribe to "transformation" result (i.e. applications, controllers,...)

Publishing	Virtual Device Serve	r ·	GUIs
Transformation User code	Virtual Device	V. Dev. 1 V. Dev. 2 V. Dev. n	1000+ devices
Acquisition	Event Builder	JAPC	Data Sources

Machine Learning Platform (MLP)

Storing and sharing trained ML models (e.g. ANNs) between users and applications of different languages. Stand-alone models hosted in the CERN cloud, ready for inference.

Machine Learning Platform (MLP)
Connecting a Python application to a stand-alone model in the cloud:
 # operational_application.py
 from mlp_client import AUTO, Client, Profile
 from mlp_model_api import INPUTS, OUTPUTS
 client = Client(Profile.PRO)
 model = client.create_standalone_model(
 "my_model_package:MyModel",
 name="my_model.default",
 version=AUTO,
)
 # Communicates via HTTP!
 response = model.predict({INPUTS: get_inputs()})
 show_results(response[OUTPUTS])


Successfully used for deploying AccGPT - our AI assistant: challenge of very large Llama2 model

Optimisation Infrastructure

Generic Optimisation Framework GeOFF

- $\ast\,$ Manual scans and grid scans are inefficient for multi-parameter problems $\rightarrow\,$ optimisation algorithms
- * GeOFF = easy and flexible parameter optimisation in the control room
- * To date: > 20 parameter optimisation problems automated across complex

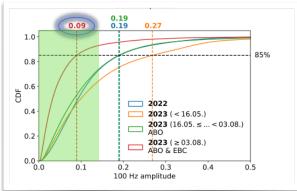
Optimisation Infrastructure

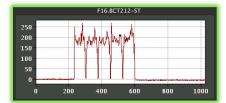
Generic Optimisation Framework GeOFF

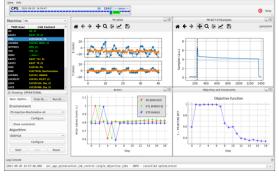
- * Manual scans and grid scans are inefficient for multi-parameter problems \rightarrow optimisation algorithms
- * GeOFF = easy and flexible parameter optimisation in the control room
- * To date: > 20 parameter optimisation problems automated across complex

Optimisation framework for auto-pilots

- * GeOFF on UCAP \rightarrow acc-geoff4ucap released in summer 2023.
- * Operational: $n \times 50$ Hz control with Adaptive Bayesian Optimisation (ABO) for North Area spill with GPUs on UCAP
- * To come in **2024**:
 - automated PS2SPS trajectory steering
 - Multi-turn extraction (MTE) efficiency drift stabilisation

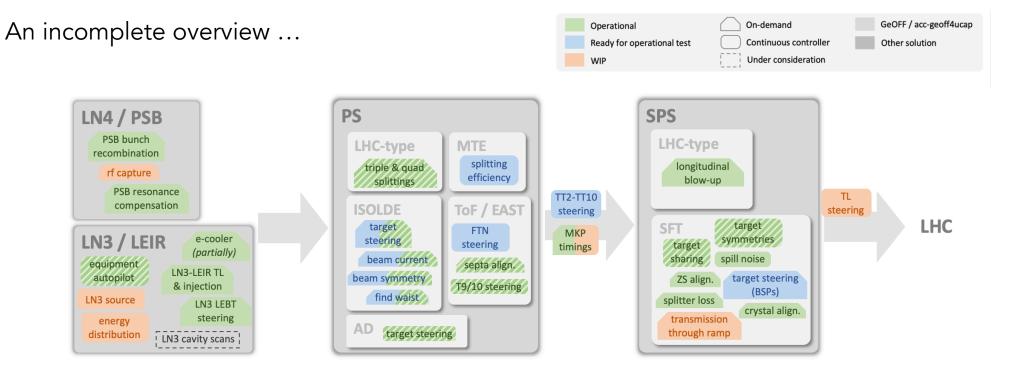

Low Emittance Rings workshop, V. Kain, 15-Feb-2024


MTE island intensities to be equal with core F16.BCT212-ST



£1¥\\.....

100 Hz content of NA spill with ABO and EBC



Auto-pilots, optimisers,...

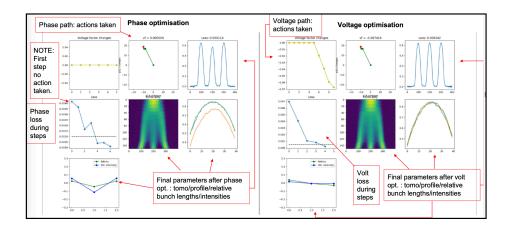
Courtesy M. Schenk

Status 2023: multiple auto-pilots / optimisers used operationally

Trends 2024: on-demand → continuous (UCAP) | some new auto-pilots

Until end of run 3: automation of all typical optimisation and continuous control problems Low Emittance Rings workshop, V. Kain, 15-Feb-2024

RL in the control room



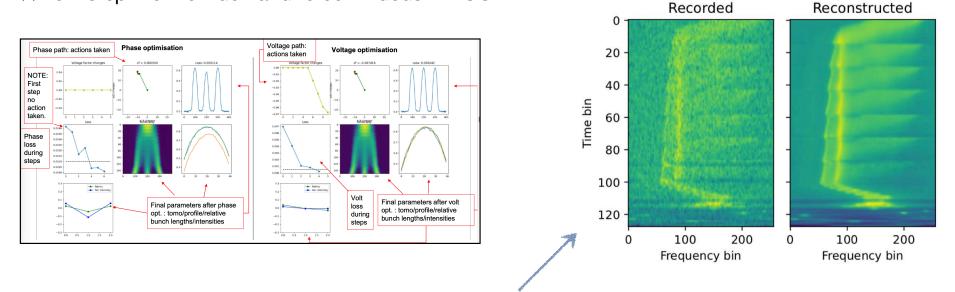
RL agent to correct **RF phase and voltage** to produce uniform RF splitting in PS for LHC beams

\star Trained on simulation and successfully transferred to control room \rightarrow fully operational

★RL algorithm: Soft Actor-Critic (SAC); multi-agent algorithm using CNN to define initial set point

\starNext step: from on-demand to continuous: \rightarrow UCAP

RL in the control room

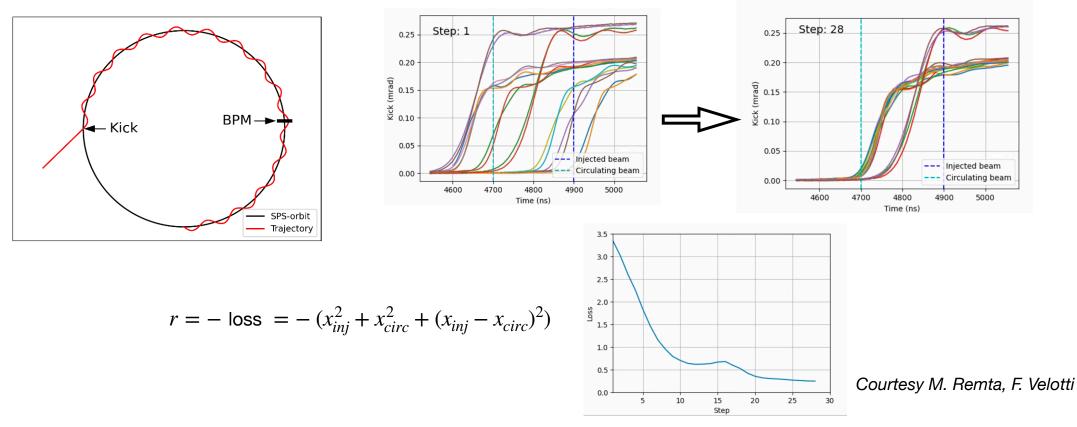


RL agent to correct **RF phase and voltage** to produce uniform RF splitting in PS for LHC beams

\star Trained on simulation and successfully transferred to control room \rightarrow fully operational

★RL algorithm: Soft Actor-Critic (SAC); multi-agent algorithm using CNN to define initial set point

\starNext step: from on-demand to continuous: \rightarrow UCAP



PhD ongoing for: control ramping and debunching cavity in LINAC3 for optimal injection efficiency into LEIR, based on Schottky spectrum. Trained on data-driven dynamics Low Emittance Rings workshop, V. Kain, 15-Feb-2024

RL in the control room

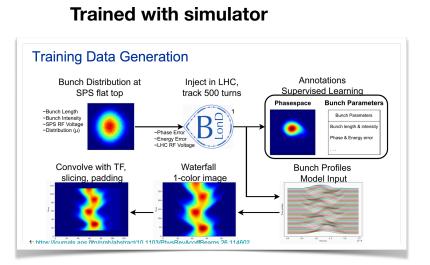
Ready for transfer test: Adjusting the fine delays of SPS injection kicker with RL for LHC beams Trained on data-driven dynamics model: RL algorithm PPO

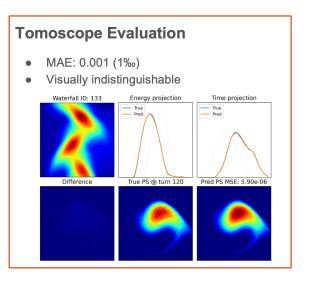
Predicting magnetic hysteresis and eddy current effects

Potentially game-changing!

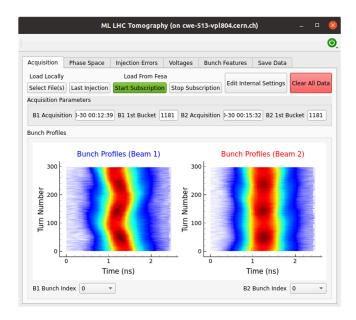
Time-series forecasting problem: need magnets to be measured on test bench $[B_t, B_{t+1}, \dots, B_{t+n-1}], [I_t, I_{t+1}, \dots, I_{t+n+N}] \rightarrow [B_{t+n}, B_{t+n+1}, \dots, B_{t+n+N}]$

First operational experience: Flat top prediction and ground truth 1.817 Measured SETPROZ LHC50NS --- Prediction 1.816 SFTPRO2 feedforward correction MD1 1.815 SFTSHIP MD1 1.814 triggered before every cycle - LHCPLOT First results PhyLSTM for 1.813 - 2 00 SPS main dipoles accuracy not sufficient yet 1.75 assuming 1.50 <u>File View Tools Help</u> $\ddot{B} + g(B, \dot{B}) = \Gamma I(t)$, next: SPS 2023-07-18 11:15:39 0 LHC50NS | MD 26 L7200 30 200 Q20 North Extraction 2023 V1 1.25 - 1.00 💆 Transformers MD_26_L7200_30_200_Q20_North_Extr: @ 2023-07-18 11:15:36.135 - 0.75 0.50 Time span [s] 60 0.25 Reset Axis Ston Prediction 0.00 10000 20000 30000 40000 50000 60000 Time [ms] 0.06244 — Measured -Prediction 0.06238 0.06232 Courtesy A. Lu Ready. Waiting for next cycle 0.06226 07-18 11:15:34.704 - sps apps, hysteresis prediction, inference, inference - INFO - Inference took: 0.223847 -Flat bottom prediction and ground truth Data from July '23


SPS main dipole field prediction vs measured, for fixed target cycles


Enhancing diagnostics - ML tomoscope in the LHC

CERN


Speeding up tomographic bunch-by-bunch reconstruction in the LHC: using Autoencoder ensemble: without AI bunch-by-bunch **not** possible.

 \rightarrow fully operational (on MLP). Used in the LHC control room to measure **injection errors**

Courtesy K. Iliakis, T. Argyropoulos

Conclusions

CERN is now heavily investing into AI/ML solutions in the control room with the **Efficient Particle Accelerators** project.

- $\odot \rightarrow$ Al-ready infrastructure
- 5 year project to be ready for the HL-LHC era

Conclusions

CERN is now heavily investing into AI/ML solutions in the control room with the **Efficient Particle Accelerators** project.

- $\odot \rightarrow$ Al-ready infrastructure
- 5 year project to be ready for the HL-LHC era

Main drivers for embracing AI solutions:

- Automation
- Improved i.e. data-driven modelling (e.g. hysteresis compensation)
- Speed up of computation: surrogate models, tomography,...

Conclusions

CERN is now heavily investing into AI/ML solutions in the control room with the **Efficient Particle Accelerators** project.

- $\odot \rightarrow$ Al-ready infrastructure
- 5 year project to be ready for the HL-LHC era

Main drivers for embracing AI solutions:

- Automation
- Improved i.e. data-driven modelling (e.g. hysteresis compensation)
- Speed up of computation: surrogate models, tomography,...

To come still at scale:

• ML for fault analysis and anomaly detection for preventive maintenance