Machine Learning-based Modelling
at the LHC and Muon Collider Studies

Elena Fol

CERN, Beams Department
(BE-ABP-LAF)

|.LFAST 9th Low Emittance Rings Workshop 2024
13-16 February 2024

o)

N/ S



ML-based Modelling vs. Traditional methods

Traditional Modelling Machine Learning approach
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ML-based Modelling in Particle Accelerators

Which limitations can be solved by ML?

> Direct measurements are not possible

> Analytical solution does not exist Machine Learning:

> v Learn arbitrary models
v Directly from provided data

> Computationally expensive simulations

> Non-linear, correlated sub-systems

> Rapidly changing environment




ML in accelerators modelling: Examples

» Speeding-up computationally costly simulations:

Methods: Clustering techniques, Gaussian Processes, Supervised Learning (inverse) models

Applications: Sample-efficient dynamic aperture estimation [1],

electron beam size optimisation[2]
» Operation automation and online tuning:

Methods: Bayesian optimization (using Gaussian Processes), Reinforcement Learning,

physics-informed NN for modelling, Clustering techniques

Applications: Tuning optics models in storage rings [3], beam trajectory steering [4], faulty BPMs detection [5]
»Virtual Diagnostics:

Methods: Image-based analysis using Convolutional NN trained on simulations

Applications: 6D phase space reconstruction [6]
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ML-based Modelling at the LHC




Optics corrections in the LHC using Supervised Learning
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Schematic circuit representation

T,

e Access to the magnets for direct measurements is not possible during operation.
= Beam-based measurements and corrections of lattice imperfections.
e Computed corrections provide circuit settings to compensate measured beta-beating
= \\hat are the actual individual magnet errors?
= Modelling of inverse relation between measured optics and magnet errors




Optics corrections: prediction of magnets errors
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Published in: The European Physical Journal Plus volume 136, Article
number: 365 (2021), “Supervised learning-based reconstruction of
magnet errors in circular accelerators”.




LHC commissioning 2022: beam optics corrections

Example: Corrections in Interaction Region 1, squeeze to f* =30 cm (challenging low beta optics)

Measurements L
1 . . . .
. iy v Sufficiently accurate prediction of
- e = magnet errors directly from standard optics
s = analysis data
S <-3 Ph b d lvine th
4 xf | v Phase errors can be corrected applying the
. — Matched -4, —— Matched . h . . .
C e ke | Measured errors with opposite sign as correction
T 00h =0 100 T 22800 23000 23200 23400 23600 23800 24000 24200 Settings

Longitudinal locati
Longitudinal location [m] ongitudinal location [m]

AK; [1075m2] v Simultaneous local correction in all IRs

Magnet APJ  SbS ML within seconds.
MOXALLI - 123 123 . o
MOXAIRI - 123 124 > Potential to save operation time!

MQXB2.L.1 1.15 122 -0.11
MQXB2.R1 -0.87 -1.22 0.18
MQXA3.L1l 194 041 0.31
MQXA3.R1 -288 -0.7 -0.1

E.Fol et al.,"Experimental Demonstration of Machine Learning
Application in LHC optics commissioning”,IPAC22 MOPOPT047



https://ipac2022.vrws.de/papers/mopopt047.pdf
https://ipac2022.vrws.de/papers/mopopt047.pdf

Virtual Optics Measurements

> How to reconstruct optics
observables without direct
measurements?




Virtual Optics Measurements

> How to reconstruct optics
observables without direct Phase advance

Input

measurements? measurements*

* Always available from turn-by-
turn data at one beam excitation

Regression Model,
Supervised Learning
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Virtual Optics Measurements

> How to reconstruct optics
observables without direct Phase advance

Input

measurements? measurements*

* Always available from turn-by-
turn data at one beam excitation

Measuring beta-function in Interaction Regions:
Traditional technique: k-modulation:

« Based on modulation of quadrupole current
« Time consuming
« Accuracy varies depending on tune measurement

uncertainty, magnet errors and p* settings.

Output
>

Regression Model,
Supervised Learning

f next to IPs

ADX/\/ﬁX

Simultaneously for
beam 1 and 2




Virtual Optics Measurements

> How to reconstruct optics
observables without direct Phase advance | I"Put Tl ouput || A MexttoIPs
p measurements* taste Simultaneously for
measurements: Regression Model, beam 1 and 2
* Always available from turn-by- Supervised Learning
turn data at one beam excitation A Dx/ \/ ﬁx
Measuring beta-function in Interaction Regions: > Tests during LHC commissioning 2022
Traditional technique: k-modulation: * = 30 cm Location K-mod ML AB/Bimod
Bx, Bylm]  Bx, By [m] x,y [%]

« Based on modulation of quadrupole current
B1,IPIL 1262,1074 1296, 1223 | 2.6,13.8

- Time CO”SU”T'”g | B1,IPIR 1340,1051 1268,1197 | 5.3,13.9
 Accuracy varies depending on tune measurement B1,IPSL  1388,1552 1377.1659 | 0.8, 6.9
B1,IPSR 1302, 1624 1369,1642 | 52 1.1

uncertainty, magnet errors and p* settings.

B2, IPIL 1406, 1773 1435, 1851 2.1,44
B2 IPIR . 13606, 194]  1417:1895 54, 2]

. . . B2,IPSL  1511,1364 1639,1315 | 84,3.6
v f-functions left and right from IPs within a few seconds vs. B2 IPSR  1637.1377 1632.1303 | 03,54

several minutes for k-modulation

v Average accuracy: 5 % for * =30 cm.



Virtual Optics Measurements

Horizontal Dispersion reconstruction:
. Phase advance Input i1 Output fnext to IPs
e Computed by acquiring turn-by- turn data meash L o > RIS > Simultaneously for
H H °fa® Regression Model, beam 1 and 2
from SEVE ral beam excrtatlons’ Shlftlng * Always available from turn-by- I Supervised Learning \
the momentum. turn data at one beam excitation A Dx/ \/ px

e Input: simulated phase advance deviations given noise
. Output: normalized dispersion A Dx/ \/ﬁx
e Using linear regression model: 10 000 samples

Simulation example: Beam 1
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Virtual Optics Measurements

Horizontal Dispersion reconstruction:
o Phase advance Input ’ Outpu£ ﬂ next to IPs
e Computed by acquiring turn-by- turn data measurements* Simultaneously for
H H °fa’ Regression Model, beam 1 and 2
from Several beam excrtatlons’ Shlftlng * Always available from turn-by- | Supervised Learning \
the momentum. turn data at one beam excitation A Dx/ \/ px
Simulation example: Beam 1 Measurement taken during LHC commissioning, f* = 30 cm
60- True ils .
Predicted 0.2] |
>0 Difference =
40 . v The relative error of prediction is 5% (beam 1) and
=
> 3 %0 7% (beam 2)
20 0 v Potential speedup of machine commissioning for
10; —— Measurement
L = the same performance.
062 01 00 0.1 0.2

0 100 200 300 400 500
AD,/\/ Bx[Vm] BPM index




ML-based Modelling (and optimization)
in Muon Collider Design




Muon Collider: overview
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https://muoncollider.web.cern.ch




Muon Collider: overview

International
SO / \UON Collider
OO Collaboration
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€€y,
/ / \ \ High beam power

Large energy

. Muon Collider Accelerator High energy acceptance  Dense beam
M Injector o 10TV CoM Ring High field in collider ring
_ ~10km circumference 5
: (Parameter | Unit INER CVRNNETE CRRFTA O
............................... —— L L 1034 cm2st 1.8 20 40
e & ¢ N 1012 2.2 1.8 1.8
4 GeV Target, wDeca 00’ f Hz 5 5 5
: 1;"0’0" &léfumhling : = s""‘ P... MW 5.3 14.4 20
' . g _—
oo Chorw I | N | : == c - 45 0 1
o . . . <B> T 7 10.5 10.5
2 lonisation cooling (the reduction of occupied phase- . eV e e e
space by muons): the only techniqgue compatible with o,/ E % 0.1 0.1 0.1
muon’s lifetime, demonstrated by MICE collaboration o, mm 5 1.5 1.07
2 Final Cooling Channel: reduction of transverse emittance mm ° 1> 107
. . . € KLm 25 25 25
on the cost of longitudinal emittance growth
O, um 3.0 0.9 0.63

https://muoncollider.web.cern.ch



https://www.nature.com/articles/s41586-020-1958-9

Challenges and objectives of Final Cooling

International
UON Collider
Collaboration

energy loss due to
the interaction
with absorber
material

=> Reduction of ¢

Matching coils LH, absorber

Longitudnal phase space
rotation rf cavities

Acceleration rf
cavities

Re-accelerating,

rotating the beam . . Strong
Drift for developing energy- Folisi
=> Restore P 7 time correlations ol 9

reduce oF Transport coils




Challenges and objectives of Final Cooling

International
UON Collider
Collaboration

Lowering transverse emittance on the costs of : Matching coils  _Hz absorber

« Longitudinal emittance growth Longitudnal phase space /! energy loss due to
. . ] . : rotation rf cavities

« Bunch length increasing: challenging RF set-up ACC‘Z'S{,%?: rf the interaction

with absorber
material

« Energy spread
o Particle losses due to decays and energy loss

- => Reduction of ¢

dep 1 dE o ByBr db; Re-accelerating,
. T .
ds B2E ds 2__ds rotating the beam LY E T U 1] Stiorg

Energy loss Multiple - i e 11 focusing

=> Restore PZ , time correlations olal
term scattering term :
(Cooling) (Heating) reduce cE Transport coils

* Achieved in previous studies*: e1.= 55 um, with € | =76 mm, transmission 50%

eTarget is €1 = 25um => higher solenoid field, optimization




Challenges and objectives of Final Cooling

Lowering transverse emittance on the costs of :
e Longitudinal emittance growth

« Bunch length increasing: challenging RF set-up Acceleration rf

« Energy spread
o Particle losses due to decays and energy loss

dep 1 dE o ByBr db; Re-accelerating,
ds B2Eds " 2 ds rotating the beam
Energy loss Multiple => Restore PZ'
term scattering term
(Cooling) (Heating) reduce o&

* Achieved in previous studies*: e1.= 55 um, with € | =76 mm, transmission 50%

eTarget is €1 = 25um => higher solenoid field, optimization

How to speed up simulations-based desigh optimization?
How to estimate initial optimization parameters?
Robust emittance estimation during optimization?

Matching coils LH, absorber

Longitudnal phase space
rotation rf cavities

cavities

-
o

Drift for developing energy-

: : focusing
time correlations

coils

Transport coils

» Surrogate models

International
UON Collider
Collaboration

energy loss due to
the interaction
with absorber
material

=> Reduction of ¢|

» Feature Importance Analysis with Decision Trees

» Bayesian Optimization
» Clustering and anomaly detection




Final Cooling: Optimization Strategy

|. Estimate optimal momenta and 1. Optics control, ensure low beta-function
absorber lengths in every cell, in absorber by optimizing solenoid field
with objective €, = 25um. and matching coils
- Nelder — Mead - Numerical optimization, simulations
- Using cooling equations* as objective function - Surrogate model (Random Forest)
Ill. Optimize acceleration and V. Optimize a realistic RF system:
rotation of the bunch after absorber frequencies, phases, gradients to
(simplified RF model) control the longitudinal dynamics

- Bayesian Optimization, BOBYQA
- Clustering to for robust emittance estimation

International
UON Collider
7Collaboration

LH, absorber

Matching coils

Longitudnal phase space
. rotation rf cavities
Acceleration rf

cavities

Drift for developing energy-

. . focusing
time correlations

coils

Transport coils

- Global optimization:

would have 14 parameters to optimize
in each cell

- Expected to need ~17 cells in total

» Step-by-step approach, testing different
optimization algorithms




Optimizing solenoid fields: Surrogate Modeling

International
UON Collider
Collaboration

Proof of concept:

1. Run numerical optimisers, systematically saving the data (results of tracking simulations using ICOOL)

2. Train a surrogate model (Random Forest Regressor):
» input = parameters of the solenoid field in a cooling cell

» output = optics observables

3. Replace time-costly simulations with ML model, find optimal parameters

Simulated value

Simulated value 250
200 | Predicted Value PI’EdICtEd Value
Error of prediction 200 - Error of prediction

v Compute optimization function from

o 150 - ML-model prediction
v Optimization in a few minutes instead of

100 - 100 -
~1.5 hours for 200 steps using tracking
. 7 simulations
00 01 02 03 04 05 06 ° 0 005 010 015 020 025

Ae /e, .. .
17C1 init |aabsorber|




Longitudinal phase-space optimization: Bayesian Optimization

//«/ // N\
International
UON Collider

7 Collaboration

» Free parameters:
- Absorber (liquid hydrogen) thickness
- Drift length
- Number of accelerating RF cavities, rf phase

- Number of rotating RF cavities, rf phase
- B-field in RF region to match the field in the cooling

cell and the change in momentum

L .16
_ Objective function : ,
AN

obtained using RF-Track simulation code

( developed by A. Latina https://gitlab.cern.ch/rf-track )



https://gitlab.cern.ch/rf-track

Longitudinal phase-space optimization: Bayesian Optimization

International
UON Collider
7 Collaboration

» Optimization procedure: |

» Free parameters:
- Absorber (liquid hydrogen) thickness - Run optimization for a cell, a few iterations
- Drift length

- Number of accelerating RF cavities, rf phase

- Create a surrogate model to estimate the initial parameters
- Bayesian Optimization®, BOBYQA

- Number of rotating RF cavities, rf phase e \ S A
& ’ P Desired cooling ML Surrogate NP
- B-field in RF region to match the field in the cooling performance model Par;'nz:i:;nd
cell and the change in momentum . .
= [ast design estimate
o , €16 i o . .
Objective function : ’ = Use as initial guess for optimisation algorithms (optimal
AN solution is found within fewer steps)

obtained using RF-Track simulation code

( developed by A. Latina https://qitlab.cern.ch/rf-track ) » * Update probabilistic model based on function evaluation
» Optimise an acquisition function (e.g. expected improvement)

for sampling the new optimisation step

» Balance exploration and exploitation by controlling
parameters of acquisition function

» Surrogate Model: Boosted Decision Trees

»  Skopt implementation (https://scikit-optimize.github.io)



https://scikit-optimize.github.io
https://gitlab.cern.ch/rf-track

Model interpretability: permutation features importance

Feature permutation

International
UON Collider
Collaboration

e Measuring how much model’s performance decreases when each feature is randomly shuffled

e |dentify which features have greatest impact on model’s output

Example: optimization of RF in cooling cells:

e Model created from optimization data: Input: cell set up, output: beam parameters at the end of a cooling cell

0.5+

0.4 -

Importance
—
OV

o
N

0.1

0.0-

Longitudinal Momentum Prediction

voltage

accel. phase
rotation phase
freq

drift

Importance

Bunch Length Prediction

Helpful for complex models:
- what are most critical parameters to be optimised?
- Where are the bottle necks?

v “What is this model actually learning?”

voltage

drift

freq.

accel. phase
rotation phase




Final cooling optimization: robust emittance estimation

AAInternational

€J_€||
AN

» Too high emittance can be caused by a few “outliers”

» Traditional “3 sigma-cut” not always reliable,
especially towards the end of the channel

» Robust algorithm to exclude the outliers before evaluating the emittances?

Objective function :

Pz [MeV/c]
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Final cooling optimization: robust emittance estimation

AAInternational

€J_€||
AN

Objective function :

» Too high emittance can be caused by a few “outliers”

» Traditional “3 sigma-cut” not always reliable,

especially towards the enc

» Robust algorithm to excluc

of the channel

e the outliers before evaluating the emittances?

» Comparing anomaly detection techniques, density-based clustering
» Unsupervised Learning (no data, no training needed), fast-executable

v Minimum Covariance Determinant (MCD): robust estimator of covariance

e Detecting “lost” particles based on the whole 6D phase space
e Provides a “clean” covariance matrix
= Direct computation of emittances and optics observables possible

Cell 7

collider
ration

Pz [MeV/c]

start beam

after absorber and matching

after rotation, L = 2.49287548 [m] | €)= 23mm

after acceleration

S i -

No cuts applied

Cell 7
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[
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@
®
T

start beam

after absorber and matching
after absorber and matching

after rotation, L = 2.49287548 [m] . 6” — 12mm
[
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7 Cleaned
¢

40

44 46 48 50
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Robust Emittance Computation vs. Other techniques

Example: cell 3

Robust covariance

120 1
100 A
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20 22 24 26
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Example: cell 6
Robust covariance
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Summary

LHC Optics Commissioning

e Atoolbox of ML methods shows a great potential to save operational time
e Providing closer look at the individual magnet errors and causes of optics perturbations
e Fast virtual diagnostics for time-consuming measurements

Muon Collider Design (Final Cooling Channel)

e Surrogate models for both, fast objective function evaluation and estimation of initial parameter

e Bayesian Optimization combining modelling and optimization

e Anomaly detection techniques for robust emittance analysis

e “Proof-of-concept”: Opening several opportunities for accelerator design studies: identification of

most critical parameters for collider performance (e.g. feature importance analysis, but also
dimensionality reduction techniques)

e Fast-executable methods for changing requirements as design evolves

Practical Advice

e Start with simpler models - they are easier to tune and interpret. Neural Networks are not always the perfect solution!
e Numerical Optimisers are powerful tools and can be made even more efficient using surrogate models - save and structure your data!

e Not all ML algorithms need large amount of data - consider translating your problem as Unsupervised Learning task (e.g. anomaly detection)




Thanks a lot for your attention!




