Machine Learning-based Modelling at the LHC and Muon Collider Studies

Elena Fol CERN, Beams Department (BE-ABP-LAF)

> I.FAST 9th Low Emittance Rings Workshop 2024 13-16 February 2024

ML-based Modelling vs. Traditional methods

Traditional Modelling

Data
$$\longrightarrow$$
 $\frac{\Delta\beta(s)}{\beta} \approx \sum_{i} \frac{\Delta k_{i}\beta_{i}}{2\sin(2\pi Q)}\cos(2\pi Q - 2|\phi(s) - \phi_{i}|)$ \longrightarrow Output *Model*

- Creating **manually** a set of commands / equations and rules
- Example: comparing simulations and measurements

Machine Learning approach

- Learn from data automatically
- Model is developed by adjusting model's parameters to explain the relation between given data and output

ML-based Modelling in Particle Accelerators

Which limitations can be solved by ML?

- > Direct measurements are not possible
- > Analytical solution does not exist
- > Computationally expensive simulations
- > Non-linear, correlated sub-systems
- > Rapidly changing environment

✓ Directly from provided data

ML in accelerators modelling: Examples

Speeding-up computationally costly simulations:

<u>Methods</u>: **Clustering techniques**, **Gaussian Processes**, Supervised Learning (inverse) models <u>Applications</u>: Sample-efficient dynamic aperture estimation [1], electron beam size optimisation[2]

Operation automation and online tuning:

<u>Methods</u>: Bayesian optimization (using Gaussian Processes), Reinforcement Learning, physics-informed NN for modelling, Clustering techniques <u>Applications</u>: Tuning optics models in storage rings [3], beam trajectory steering [4], faulty BPMs detection [5]

► Virtual **Diagnostics**:

<u>Methods</u>: Image-based analysis using **Convolutional NN** trained on simulations <u>Applications:</u> 6D phase space reconstruction [6]

[1] F.F. Van der Veken et al., "Using Machine Learning to Improve Dynamic Aperture Estimates", IPAC'21 [2] A. Edelen et al., "Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems", Phys. Rev. Accel. Beams 23, 044601 (2020) [3] A. Ivanov, I. Agapov, "Physics-Based Deep Neural Networks for Beam Dynamics in Charged Particle Accelerators", Phys. Rev. Accel. Beams 23, 074601 (2020) [4] V. Kain et al., "Sample-efficient reinforcement learning for CERN accelerator control", Phys. Rev. Accel. Beams, 23.124801 (2020) [5] E. Fol et al., "Detection of faulty beam position monitors using unsupervised learning", Phys. Rev. Accel. Beams 23, 102805 (2020) [6] R. Roussel et al., "Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations", Phys. Rev. Lett. 130, 145001 (2023)

ML-based Modelling at the LHC

Optics corrections in the LHC using Supervised Learning

- Access to the magnets for direct measurements is not possible during operation.
 - Beam-based measurements and corrections of lattice imperfections.
- Computed corrections provide circuit settings to compensate measured beta-beating → What are the actual individual magnet errors?
- Modelling of inverse relation between measured optics and magnet errors

Optics corrections: prediction of magnets errors

Published in: The European Physical Journal Plus volume 136, Article number: 365 (2021), "Supervised learning-based reconstruction of magnet errors in circular accelerators".

LHC commissioning 2022: beam optics corrections

	ΔI	$X_1 [10 $ $^{\circ}n$	1 -]
Magnet	APJ	SbS	ML
MQXA1.L1	-	1.23	1.23
MQXA1.R1	-	-1.23	-1.24
MQXB2.L1	1.15	1.22	-0.11
MQXB2.R1	-0.87	-1.22	0.18
MQXA3.L1	1.94	0.41	0.31
MQXA3.R1	-2.88	-0.7	-0.1

- ✓ Sufficiently accurate prediction of **magnet errors** directly from standard optics analysis data
- ✓ **Phase errors can be corrected** applying the errors with opposite sign as correction settings
- ✓ Simultaneous local correction in all IRs within seconds.
- > Potential to save operation time!

E.Fol et al., "Experimental Demonstration of Machine Learning Application in LHC optics commissioning", IPAC'22 MOPOPT047

How to reconstruct optics observables without direct measurements?

> How to reconstruct optics observables without direct measurements?

> How to reconstruct optics observables without direct measurements?

Measuring beta-function in Interaction Regions:

Traditional technique: **k-modulation**:

- Based on modulation of quadrupole current
- Time consuming
- Accuracy varies depending on tune measurement

uncertainty, magnet errors and β^* settings.

> How to reconstruct optics observables without direct measurements?

Measuring beta-function in Interaction Regions:

Traditional technique: **k-modulation**:

- Based on modulation of quadrupole current
- Time consuming
- Accuracy varies depending on tune measurement \bullet

uncertainty, magnet errors and β^* settings.

 $\checkmark \beta$ -functions left and right from IPs within a few seconds vs. several minutes for k-modulation

✓ Average accuracy: **5** % for β^* = **30** cm.

> Tests during LHC commissioning 2022

β* = 30 cm	Location	K-mod $\beta_x, \beta_y[m]$	$\mathbf{ML} \\ \boldsymbol{\beta}_x, \boldsymbol{\beta}_y \ [m]$	$\frac{\Delta\beta/\beta_{kmod}}{x, y [\%]}$
	B1, IP1L	1262, 1074	1296, 1223	2.6, 13.8
	B1, IP1R	1340, 1051	1268, 1197	5.3, 13.9
	B1, IP5L	1388, 1552	1377, 1659	0.8, 6.9
	B1, IP5R	1302, 1624	1369, 1642	5.2, 1.1
	B2, IP1L	1406, 1773	1435, 1851	2.1, 4.4
	B2, IP1R	1366, 1947	1412, 1893	3.4, 2.7
	B2, IP5L	1511, 1364	1639, 1315	8.4, 3.6
	B2, IP5R	1637, 1377	1632, 1303	0.3, 5.4

Horizontal Dispersion reconstruction:

Computed by acquiring turn-by- turn data from several beam excitations, shifting the momentum.

- **Output**: normalized dispersion $\Delta Dx / \sqrt{\beta x}$
- Using **linear regression model**: 10 000 samples

Horizontal Dispersion reconstruction:

Computed by acquiring turn-by- turn data from several beam excitations, shifting the momentum.

ML-based Modelling (and optimization) in Muon Collider Design

produces pions

cooled to lower emittance

→ decay into muons

https://muoncollider.web.cern.ch

Muon Collider: overview

- **Ionisation cooling** (the reduction of occupied phase-space by muons): the only technique compatible with **muon's lifetime**, demonstrated by <u>MICE collaboration</u>
- **Final Cooling Channel:** reduction of transverse emittance on the cost of longitudinal emittance growth

https://muoncollider.web.cern.ch

Parameter	Unit	3 TeV	10 TeV	14
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	4
Ν	10 ¹²	2.2	1.8	1
f _r	Hz	5	5	
P _{beam}	MW	5.3	14.4	2
С	km	4.5	10	1
	Т	7	10.5	10
ε	MeV m	7.5	7.5	7
σ _E / Ε	%	0.1	0.1	0
σ _z	mm	5	1.5	1.
β	mm	5	1.5	1.
8	μm	25	25	2
σ _{x,y}	μm	3.0	0.9	0.

Challenges and objectives of Final Cooling

Challenges and objectives of Final Cooling

Lowering transverse emittance on the costs of :

- Longitudinal emittance growth
- Bunch length increasing: challenging RF set-up
- Energy spread
- Particle losses due to decays and energy loss

$\frac{d\varepsilon_T}{ds} =$	$=-\frac{1}{\beta^2 E}\frac{dE}{ds}\varepsilon_T$	$+\frac{\beta\gamma\beta_T}{2}\frac{d\theta_0^2}{ds}$
us	Energy loss	Multiple
	term (Cooling)	scattering term (Heating)

- Achieved in previous studies*: $\epsilon_{\perp} = 55 \mu m$, with $\epsilon_{\parallel} = 76 \, mm$, transmission 50%
- •Target is $\epsilon_{\perp} = 25 \mu m =>$ higher solenoid field, optimization

Challenges and objectives of Final Cooling

Lowering transverse emittance on the costs of :

- Longitudinal emittance growth
- Bunch length increasing: challenging RF set-up
- Energy spread
- Particle losses due to decays and energy loss

$\frac{d\varepsilon_T}{ds} =$	$= -\frac{1}{\beta^2 E} \frac{dE}{ds} \varepsilon_T$	$+\frac{\beta\gamma\beta_T}{2}\frac{d\theta_0^2}{ds}$
us	Energy loss	Multiple
	term (Cooling)	scattering term (Heating)

- Achieved in previous studies*: $\epsilon_{\perp} = 55 \mu m$, with $\epsilon_{\parallel} = 76 mm$, transmission 50%
- •Target is $\epsilon_{\perp} = 25 \mu m =>$ higher solenoid field, optimization
 - How to **speed up** simulations-based design optimization?
 - How to estimate initial optimization parameters?
 - Robust emittance estimation during optimization?

- Surrogate models
- Feature Importance Analysis with Decision Trees
- Bayesian Optimization
- Clustering and anomaly detection

Final Cooling: Optimization Strategy

I. Estimate optimal momenta and absorber lengths in every cell, with objective $\epsilon_{\perp} = 25 \mu m$.

- Nelder – Mead

Using cooling equations* as objective function

II. **Optics control**, ensure low beta-function in absorber by **optimizing solenoid field** and matching coils

- Surrogate model (Random Forest)

III. Optimize acceleration and rotation of the bunch after absorber (simplified RF model)

IV. Optimize a realistic RF system: frequencies, phases, gradients to control the longitudinal dynamics

Bayesian Optimization, BOBYQA

Clustering to for robust emittance estimation

- Numerical optimization, simulations

- Global optimization:
 - would have **14 parameters** to optimize in each cell
- Expected to need ~17 cells in total
- Step-by-step approach, testing different optimization algorithms

Optimizing solenoid fields: Surrogate Modeling

Proof of concept:

- 1. Run numerical optimisers, systematically saving the data (results of tracking simulations using ICOOL)
- 2. Train a surrogate model (Random Forest Regressor):
- input = parameters of the solenoid field in a cooling cell
- output = optics observables

3. **Replace time-costly simulations** with ML model, find optimal parameters

Longitudinal phase-space optimization: Bayesian Optimization

Free parameters:

- Absorber (liquid hydrogen) thickness
- Drift length
- Number of accelerating RF cavities, rf phase
- Number of rotating RF cavities, rf phase
- B-field in RF region to match the field in the cooling cell and the change in momentum
- **Objective function** : $\frac{\epsilon_{\perp}\epsilon_{\parallel}}{\epsilon_{\perp}}$,

obtained using RF-Track simulation code

developed by A. Latina https://gitlab.cern.ch/rf-track)

Longitudinal phase-space optimization: Bayesian Optimization

Free parameters:

- Absorber (liquid hydrogen) thickness
- Drift length
- Number of accelerating RF cavities, rf phase
- Number of rotating RF cavities, rf phase
- B-field in RF region to match the field in the cooling cell and the change in momentum
- **Objective function** : $\frac{\epsilon_{\perp}\epsilon_{\parallel}}{\epsilon_{\perp}}$,

obtained using RF-Track simulation code

developed by A. Latina https://gitlab.cern.ch/rf-track)

Optimization procedure:

- Run optimization for a cell, a few iterations -
- Create a surrogate model to estimate the initial parameters -
- Bayesian Optimization*, BOBYQA

- → Fast design estimate
- → Use as initial guess for optimisation algorithms (optimal solution is found within fewer steps)
- * Update probabilistic model based on function evaluation
- Optimise an acquisition function (e.g. expected improvement) for sampling the new optimisation step
- Balance exploration and exploitation by controlling parameters of acquisition function
- Surrogate Model: Boosted Decision Trees
- Skopt implementation (<u>https://scikit-optimize.github.io</u>)

Model interpretability: permutation features importance

Feature permutation

- Measuring how much model's performance decreases when each feature is randomly shuffled
- Identify which features have greatest impact on model's output

Example: optimization of RF in cooling cells:

Model created from optimization data: <u>Input</u>: **cell set up**, <u>output</u>: **beam parameters** at the end of a cooling cell

Final cooling optimization: robust emittance estimation

Objective function :
$$\frac{\epsilon_{\perp}\epsilon_{||}}{\Delta N}$$

- Too high emittance can be caused by a few "outliers"
- Traditional "3 sigma-cut" not always reliable, especially towards the end of the channel
- Robust algorithm to exclude the outliers before evaluating the emittances?

t [m]

50

Final cooling optimization: robust emittance estimation

Objective function :
$$\frac{\epsilon_{\perp}\epsilon_{||}}{\Delta N}$$

- Too high emittance can be caused by a few "outliers"
- Traditional "3 sigma-cut" not always reliable, especially towards the end of the channel
- Robust algorithm to exclude the outliers before evaluating the emittances?
- Comparing anomaly detection techniques, density-based clustering
- Unsupervised Learning (no data, no training needed), fast-executable

✓ Minimum Covariance Determinant (MCD): robust estimator of covariance

- Detecting "lost" particles based on the whole **6D phase space**
- Provides a "clean" covariance matrix
- Direct computation of emittances and optics observables possible

Robust Emittance Computation vs. Other techniques

Example: cell 3

Example: cell 6

Cooling performance

Prelimii	nary	$\epsilon_{\perp}[\mu m]$	$\epsilon_{ }$ [mm]	N [%]
	3σ -cut	39	85	35
	IF	33	82	33
	MCD	35	80	38
	No cuts	46	106	42

Summary

LHC Optics Commissioning

- A toolbox of ML methods shows a great potential to save operational time
- Providing closer look at the **individual magnet errors** and causes of optics perturbations
- **Fast virtual diagnostics** for time-consuming measurements

Muon Collider Design (Final Cooling Channel)

- Surrogate models for both, fast objective function evaluation and estimation of initial parameter
- **Bayesian Optimization** combining modelling and optimization
- Anomaly detection techniques for robust emittance analysis
- most critical parameters for collider performance (e.g. feature importance analysis, but also dimensionality reduction techniques)
- Fast-executable methods for changing requirements as design evolves

Practical Advice

- Start with simpler models they are easier to tune and interpret. Neural Networks are not always the perfect solution!

• "Proof-of-concept": Opening several opportunities for accelerator design studies: identification of

• Numerical Optimisers are powerful tools and can be made even more efficient using surrogate models - save and structure your data! Not all ML algorithms need large amount of data - consider translating your problem as **Unsupervised Learning** task (e.g. anomaly detection)

Thanks a lot for your attention!

