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ML-based Modelling vs. Traditional methods

Traditional Modelling Machine Learning approach

Data Output

Data x

Output y

-  Learn from data automatically

- Model is developed by adjusting 

model’s parameters to explain the 
relation between given data and 
output

- Creating manually a set of 
commands / equations and rules


- Example: comparing simulations 
and measurements

Model
𝒚 = 𝒇(∑ 𝒙𝒊𝒘𝑖 + 𝒃)
Model
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Which limitations can be solved by ML?

ML-based Modelling in Particle Accelerators

➢ Direct measurements are not possible


➢ Analytical solution does not exist


➢ Computationally expensive simulations


➢ Non-linear, correlated sub-systems


➢ Rapidly changing environment 

Machine Learning:

✓ Learn arbitrary models

✓ Directly from provided data
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ML in accelerators modelling: Examples

‣ Speeding-up computationally costly simulations:  
	 	 Methods: Clustering techniques, Gaussian Processes, Supervised Learning (inverse) models 
	 	 Applications: Sample-efficient dynamic aperture estimation [1],   
                                 electron beam size optimisation[2]	 	 


‣ Operation automation and online tuning: 

	 	 Methods: Bayesian optimization (using Gaussian Processes), Reinforcement Learning,  
                                     physics-informed NN for modelling, Clustering techniques 
	 	 Applications: Tuning optics models in storage rings [3], beam trajectory steering [4], faulty BPMs detection [5]


‣Virtual Diagnostics:

	 	 Methods: Image-based analysis using Convolutional NN trained on simulations	 	 

                        Applications: 6D phase space reconstruction [6]

[1] F.F. Van der Veken et al., “Using Machine Learning to Improve Dynamic Aperture Estimates”, IPAC’21
[2] A. Edelen et al., “Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems”, Phys. Rev. Accel. Beams 23, 044601 (2020)
[3] A. Ivanov, I. Agapov,  “Physics-Based Deep Neural Networks for Beam Dynamics in Charged Particle Accelerators”, Phys. Rev. Accel. Beams 23, 074601 (2020)
[4] V. Kain et al., “Sample-efficient reinforcement learning for CERN accelerator control”, Phys. Rev. Accel. Beams, 23.124801 (2020)
[5] E. Fol et al., “Detection of faulty beam position monitors using unsupervised learning”, Phys. Rev. Accel. Beams 23, 102805 (2020)
[6] R. Roussel et al., “Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations”, Phys. Rev. Lett. 130, 145001 (2023)



ML-based Modelling at the LHC
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Optics corrections in the LHC using Supervised Learning

Schematic circuit representation

Quad 1 Quad 2 Quad N……

Power 
Supply

Errors 
Δk1 Δk2 ΔkN

Corrections

/ 
Δ

𝛽
𝛽

𝜷 ➡ Determined by quadrupole 
arrangement and powering: 

• Access to the magnets for direct measurements is not possible during operation. 

➡ Beam-based measurements and corrections of lattice imperfections.


• Computed corrections provide circuit settings to compensate measured beta-beating

➡ What are the actual individual magnet errors?

➡ Modelling of inverse relation between measured optics and magnet errors

Δ𝛽
𝛽

=
𝛽𝑚𝑒𝑎𝑠 − 𝛽𝑚𝑜𝑑𝑒𝑙

𝛽𝑚𝑜𝑑𝑒𝑙
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Optics corrections: prediction of magnets errors

Published in:  The European Physical Journal Plus volume 136, Article 
number: 365 (2021) , “Supervised learning-based reconstruction of 
magnet errors in circular accelerators”.

Random Forest Regressor:

• Ensemble of decision trees:  

lower complexity vs. NN

• 1256 target variables,  

2048 input variables

• Tested on simulations, 

historical data  
and LHC commissioning
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✓ Sufficiently accurate prediction of 
magnet errors directly from standard optics 
analysis data


✓ Phase errors can be corrected applying the 
errors with opposite sign as correction 
settings


✓ Simultaneous local correction in all IRs 
within seconds.


➢ Potential to save operation time!

Example: Corrections in Interaction Region 1, squeeze to  𝛽* = 30 cm (challenging low beta optics)

E.Fol et al.,“Experimental Demonstration of Machine Learning 
Application in LHC optics commissioning”,IPAC’22 MOPOPT047

LHC commissioning 2022:  beam optics corrections

Measurements

https://ipac2022.vrws.de/papers/mopopt047.pdf
https://ipac2022.vrws.de/papers/mopopt047.pdf
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Virtual Optics Measurements
➢ How to reconstruct optics 

observables without direct 
measurements?
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Virtual Optics Measurements
➢ How to reconstruct optics 

observables without direct 
measurements?

∆ 𝐷x/√𝛽x

 next to IPs 𝛽
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Virtual Optics Measurements

Measuring beta-function in Interaction Regions:

Traditional technique:  k-modulation:
• Based on modulation of quadrupole current

• Time consuming

• Accuracy varies depending on tune measurement 

uncertainty, magnet errors and 𝛽* settings. 

➢ How to reconstruct optics 
observables without direct 
measurements?

∆ 𝐷x/√𝛽x

 next to IPs 𝛽
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Virtual Optics Measurements

Measuring beta-function in Interaction Regions:

Traditional technique:  k-modulation:
• Based on modulation of quadrupole current

• Time consuming

• Accuracy varies depending on tune measurement 

uncertainty, magnet errors and 𝛽* settings. 

➢ How to reconstruct optics 
observables without direct 
measurements?

∆ 𝐷x/√𝛽x

 next to IPs 𝛽

✓ 𝛽-functions left and right from IPs within a few seconds vs. 
several minutes for k-modulation


✓ Average accuracy: 5 % for 𝛽* = 30 cm. 

➢ Tests during LHC commissioning 2022

𝛽* = 30 cm
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Virtual Optics Measurements
Horizontal Dispersion reconstruction:

• Computed by acquiring turn-by- turn data 
from several beam excitations, shifting 
the momentum. 

• Input: simulated phase advance deviations given noise


• Output: normalized dispersion 


• Using linear regression model: 10 000 samples 
∆ 𝐷x/√𝛽x

Simulation example: Beam 1 

∆ 𝐷x/√𝛽x

 next to IPs 𝛽
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Virtual Optics Measurements
Horizontal Dispersion reconstruction:

• Computed by acquiring turn-by- turn data 
from several beam excitations, shifting 
the momentum. 

Simulation example: Beam 1 

✓The relative error of prediction is 5% (beam 1 ) and 
7% (beam 2)

✓Potential speedup of machine commissioning for 

the same performance.

Measurement taken during LHC commissioning, 𝛽* = 30 cm

∆ 𝐷x/√𝛽x

 next to IPs 𝛽



ML-based Modelling (and optimization) 
in Muon Collider Design
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Muon Collider: overview

Short intense proton 
bunch sent on the 
target

Interaction with the target 
produces pions

➡ decay into muons

Muons are captured and 
cooled to lower emittance

https://muoncollider.web.cern.ch
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Muon Collider: overview

https://muoncollider.web.cern.ch

Ionisation cooling (the reduction of occupied phase-
space by muons): the only technique compatible with 
muon’s lifetime,  demonstrated by MICE collaboration

Final Cooling Channel: reduction of transverse emittance 
on the cost of longitudinal emittance growth 

https://www.nature.com/articles/s41586-020-1958-9
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Challenges and objectives of Final Cooling

energy loss due to 
the interaction 
with absorber 

material

=> Reduction of ϵ⊥

Re-accelerating, 
rotating the beam


=> Restore  , 
reduce 

PZ
σE
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Challenges and objectives of Final Cooling

Energy loss 
term


(Cooling)

Multiple 
scattering term


(Heating)

Lowering transverse emittance on the costs of :

•  Longitudinal emittance growth 

•  Bunch length increasing: challenging RF set-up 

•  Energy spread 

• Particle losses due to decays and energy loss

• Achieved in previous studies*: ε┴ = 55 μm,  with ε║ = 76 mm, transmission 50%


•Target is  ε┴ = 25μm => higher solenoid field, optimization

energy loss due to 
the interaction 
with absorber 

material

=> Reduction of ϵ⊥

Re-accelerating, 
rotating the beam


=> Restore  , 
reduce 

PZ
σE
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Challenges and objectives of Final Cooling

• How to speed up simulations-based design optimization?

• How to estimate initial optimization parameters?

• Robust emittance estimation during optimization?

‣ Surrogate models


‣ Feature Importance Analysis with Decision Trees


‣ Bayesian Optimization


‣ Clustering and anomaly detection

Energy loss 
term


(Cooling)

Multiple 
scattering term


(Heating)

Lowering transverse emittance on the costs of :

•  Longitudinal emittance growth 

•  Bunch length increasing: challenging RF set-up 

•  Energy spread 

• Particle losses due to decays and energy loss

energy loss due to 
the interaction 
with absorber 

material

=> Reduction of ϵ⊥

Re-accelerating, 
rotating the beam


=> Restore  , 
reduce 

PZ
σE

• Achieved in previous studies*: ε┴ = 55 μm,  with ε║ = 76 mm, transmission 50%


•Target is  ε┴ = 25μm => higher solenoid field, optimization
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Final Cooling: Optimization Strategy

- Global optimization: 
would have 14 parameters to optimize 
in each cell


- Expected to need ~17 cells in total


‣ Step-by-step approach, testing different 
optimization algorithms

I.  Estimate optimal momenta and 
absorber lengths in every cell, 
with objective  𝜖⊥ = 25𝜇𝑚 .  

II. Optics control, ensure low beta-function 
in absorber by optimizing solenoid field 
and matching coils

III. Optimize acceleration and 
rotation of the bunch after absorber 
(simplified RF model)

IV. Optimize a realistic RF system: 
frequencies, phases, gradients to 
control the longitudinal dynamics

- Nelder – Mead 
- Using cooling equations* as objective function

- Numerical optimization, simulations

- Surrogate model (Random Forest)

- Bayesian Optimization, BOBYQA

- Clustering to for robust emittance estimation
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Optimizing solenoid fields: Surrogate Modeling 

✓ Compute optimization function from  
ML-model prediction


✓ Optimization in a few minutes instead of 
~1.5 hours for 200 steps using tracking 
simulations

2. Train a surrogate model (Random Forest Regressor):  

‣ input = parameters of the solenoid field in a cooling cell

‣ output = optics observables 

3. Replace time-costly simulations with ML model, find optimal parameters

1. Run numerical optimisers, systematically saving the data (results of tracking simulations using ICOOL)

Proof of concept: 
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Longitudinal phase-space optimization: Bayesian Optimization
‣ Free parameters: 


- Absorber (liquid hydrogen) thickness

- Drift length 

- Number of accelerating RF cavities, rf phase

- Number of rotating RF cavities, rf phase

- B-field in RF region to match the field in the cooling 

cell and the change in momentum


- Objective function : ,  

obtained using  RF-Track simulation code  
( developed by A. Latina https://gitlab.cern.ch/rf-track )

ϵ⊥ϵ||

ΔN

https://gitlab.cern.ch/rf-track
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Longitudinal phase-space optimization: Bayesian Optimization

➡ Use as initial guess for optimisation algorithms (optimal 
solution is found within fewer steps)

➡ Fast design estimate

‣ * Update probabilistic model based on function evaluation

‣ Optimise an acquisition function (e.g. expected improvement) 

for sampling the new optimisation step

‣ Balance exploration and exploitation by controlling 

parameters of acquisition function

‣ Surrogate Model: Boosted Decision Trees

‣ Skopt implementation (https://scikit-optimize.github.io)

‣ Optimization procedure: 

- Run optimization for a cell, a few iterations

- Create a surrogate model to estimate the initial parameters

- Bayesian Optimization*, BOBYQA

‣ Free parameters: 

- Absorber (liquid hydrogen) thickness

- Drift length 

- Number of accelerating RF cavities, rf phase

- Number of rotating RF cavities, rf phase

- B-field in RF region to match the field in the cooling 

cell and the change in momentum


- Objective function : ,  

obtained using  RF-Track simulation code  
( developed by A. Latina https://gitlab.cern.ch/rf-track )

ϵ⊥ϵ||

ΔN

https://scikit-optimize.github.io
https://gitlab.cern.ch/rf-track


Example: optimization of RF in cooling cells:

• Model created from optimization data: Input: cell set up, output: beam parameters at the end of a cooling cell

Model interpretability: permutation features importance
Feature permutation


• Measuring how much model’s performance decreases when each feature is randomly shuffled

• Identify which features have greatest impact on model’s output

Helpful for complex models: 
- what are most critical parameters to be optimised? 
- Where are the bottle necks?

✓ “What is this model actually learning?”
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Final cooling optimization: robust emittance estimation

Objective function : 


‣ Too high emittance can be caused by a few “outliers”

‣ Traditional “3 sigma-cut” not always reliable,  

especially towards the end of the channel

‣ Robust algorithm to exclude the outliers before evaluating the emittances?


ϵ⊥ϵ||

ΔN

No cuts applied

ϵ∥ = 23mm

ϵ∥ = 12mm
Cleaned
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✓ Minimum Covariance Determinant (MCD): robust estimator of covariance


• Detecting “lost” particles based on the whole 6D phase space

• Provides a “clean” covariance matrix 

➡ Direct computation of emittances and optics observables possible

Final cooling optimization: robust emittance estimation

Objective function : 


‣ Too high emittance can be caused by a few “outliers”

‣ Traditional “3 sigma-cut” not always reliable,  

especially towards the end of the channel

‣ Robust algorithm to exclude the outliers before evaluating the emittances?

‣ Comparing anomaly detection techniques, density-based clustering

‣ Unsupervised Learning (no data, no training needed), fast-executable

ϵ⊥ϵ||

ΔN

No cuts applied

ϵ∥ = 23mm

ϵ∥ = 12mm
Cleaned
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Robust Emittance Computation vs. Other techniques

Cooling performance

Preliminary

Example: cell 3

Example: cell 6
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Summary
LHC Optics Commissioning 


• A toolbox of ML methods shows a great potential to save operational time 

• Providing closer look at the individual magnet errors and causes of optics perturbations

• Fast virtual diagnostics for time-consuming measurements

Muon Collider Design (Final Cooling Channel)

• Surrogate models for both, fast objective function evaluation and estimation of initial parameter 

• Bayesian Optimization combining modelling and optimization

• Anomaly detection techniques for robust emittance analysis

• “Proof-of-concept”: Opening several opportunities for accelerator design studies: identification of 

most critical parameters for collider performance  (e.g. feature importance analysis, but also 
dimensionality reduction techniques)


• Fast-executable methods for changing requirements as design evolves

Practical Advice

• Start with simpler models - they are easier to tune and interpret. Neural Networks are not always the perfect solution!

• Numerical Optimisers are powerful tools and can be made even more efficient using surrogate models - save and structure your data!

• Not all ML algorithms need large amount of data - consider translating your problem as Unsupervised Learning task (e.g. anomaly detection)



Thanks a lot for your attention!
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