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What is the problem?

• Sextupolar and octupolar magnetic errors in the triplets of the LHC cause nonlinear perturbations
in the beam dynamics

• This nonlinear motion has an impact on stability => Lifetime of the beam decreases

Current state of nonlinear commissioning in the LHC:

• Time consuming and iterative

• Multitude of techniques, crossing angle scans, amplitude detuning, Resonance Driving Terms
(RDTs)…

Can we use only RDTs to correct multiple orders at ONCE?

Motivation
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What is a Resonance Driving Term (RDT)?

• A order specific nonlinear optics observable

This can be obtained from simulation codes but also measured from turn by turn data

Using simulation data to train a realistic ML error prediction model, to be used in commissioning

Methods: Data generation
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Errors assigned to ALL the triplets in all IPs
according to the WISE tables [3] [4] AT THE 
SAME TIME 

Generate RDT data, 30K samples using MADNG
running on HTCondor

• MADX-PTC execution time: 27.17 [min]

• MADNG execution time: 20.00 [s] 82 times 
faster!

The goal is to predict errors for IP1 and IP5 
triplets

Actual corrector strength can be calculated with
this errors

Methods: Data generation
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[1] [2] Fig 1. Simulation setup

a3                          a4 b3 b4 
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Best performing: Quadratic Polynomial regression with L2 
regularization and bagging

Complicated nonlinear motion and simulations, but for the 
most part RDTs and errors are linearly correlated! Some 
RDTs might propagate non linearly

Ensemble of 10 different regressions trained on different 
subsets of the data

• Input: 8 different RDTs (real and imaginary) simulated all 
around 376 BPMs in the LHC => 12032 Dim

• Output: Skew and normal sextupolar and octupolar errors in 
the main quadrupoles for IP1 and IP5 => 64 Dim

Not using IR BPMs since they can´t be measured, this has 
great impact on performance 

Methods: Supervised Learning
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Fig 2. One-dimensional polynomial 

regression example with xing angles
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Finding a subset of best quality observables, 2 beams
40 RDTs and 376 BPMs

This means a 60160 dimension input! 

Feature extraction:

• Most correlated RDTs with error

• Highest amplitude in tune signal RDTs

• Highest phase advance resolution

Beware of conjugate RDTs

 Only 8 RDTs are chosen at the moment!

Reducing the number of BPMs is an ongoing study

Methods: Supervised Learning
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Octupolar: Sextupolar:

Normal f4000 f3000

f0220 f1020

Skew f0130 f0030

f1030 f2010

Tab 1. RDTs chosen as input
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ML Model:

• ML model is able to reconstruct original errors: R
2

= 0.883 Test

Lets see how it performs against a response matrix approach

Response Matrix:

• One response matrix for each order error using same
observables as the ML model

• Response matrix approach is more sensitive to degeneracy, 
only works at correcting, but not for predicting error sources

How good are these corrections? 

Results: Machine Learning VS Response Matrix
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Fig 3. Example Sample correction for RDTs
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Results: ML vs RM
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ML Method

• All RDTs seem to be corrected, even ones that
where not used in the algorithm ie. f3100

Response matrix

• For the most part corrections are working

• Struggling to correct octupolar RDTs this migth
be due to a second order effects from
sextupoles

• RDTs not used in the model also corrected

Fig 4. Performance in a RDT that is not

included in the model
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Results: ML vs RM
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Performance over multiple samples

• Correcting 1000 samples and making a histogram with the RMS deviance from nominal

• Comparing performance from both methods for the used RDTs
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Fig 5. Correction histograms for 1000 samples for sextupolar RDTs
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Fig 6. Correction histograms for 1000 samples for octupolar RDTs
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• The ML correction performs better in all RDTs and is simultaneous

• I have found that it is usually more robust than the response matrix approach

Results: ML vs RM
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Results: Performance with crossing angles
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Fig 7. Correlation matrices for RDTs with and without 
crossing angles 

Crossing angles in the IRs result in 
off axis beams in the triplets

• Causes mixing of nonlinear modes

• Very challenging for response 
matrix
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Results: Performance with crossing angles
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Fig 8. Correction histograms for 100 samples 
with a xing angle setup

ML Model:

• Training on data with xing angles
yields other working model

• ML Method can be improved, but
works in general

Could not get response matrix to 
work
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• Faster simulation codes (MADNG) open up new possibilities for more computationally
intensive modelling for nonlinear studies

• These ML techniques allow for a more complex modelling of errors and resonances

• Thus far machine learning seems to be a feasible tool for correcting multiple RDTs at 
once

• Performance is more robust and yields better results than an equivalent response matrix
method

• In order to test in operation a realistic noise must be modelled as well as using driven RDTs

Conclusions
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Coefficient of determination: R2

• R2 is a measure that indicates how much of the data variance can be 
explained by the model, R2=1 means a perfect score

Mean Average Error: MAE

• Average absolute error made by the model

Backup Slides: Performance metrics
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• Currently the preferred method used for optics
corrections

• This can be seen as a specific case of linear 
regression that calculates the weights of the
model using two points, for each variable

• The pseudoinverse matrix is calculated using
Singular Value Decomposition (SVD)

• Multiple approaches were tested

• Using the same observables and magnets as 
the previously explained ML method

Backup Slides: Response Matrix

Alejandro Börjesson Carazo | Supervised Learning for Nonlinear Corrections in the LHC 2015 February 2024



Backup Slides: WISE tables
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MQXA Average and Standard error [3]
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MQXB Average and Standard error [4]
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Feature extraction (Correlation):

• The inputs are correlated with the 
outputs as expected, each different 
order error with its corresponding 
resonances

Methods: Supervised Learning
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Fig 4. Correlation matrix for the RMS RDTs 

across the LHC with the error (Input vs Output)
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Feature extraction (RMS spectral line 
strength):

• Some RDTs are more present in the 
spectrum, this measurements should be 
less noisy 
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Fig 5. RMS spectral line strength (Vertical plane)
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Tab 2. Best training results

Backup slides: ML Model 
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Error 

Type

Set R2 MAE 

[NORM]

CORR 

R2

Sext Train 0.997 0.030 0.998

Test 0.997 0.033 0.998

S Sext Train 0.999 0.0022 0.999

Test 0.999 0.0024 0.999

Oct Train 0.777 0.343 0.953

Test 0.728 0.379 0.943

S Oct Train 0.809 0.282 0.936

Test 0.770 0.309 0.923

ALL Train 0.904 0.157 0.974

Test 0.883 0.173 0.968

Fig 3. Performance VS dataset size

Using a 80/20 train to test data split
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Correlation Matrix with no xing angle setup
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Correlation Matrix with xing angle setup
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RMS Spectral line strength in the vertical plane
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RMS Spectral line strength in the horizontal plane
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Results: Performance with Xing angles
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Example RDT Response matrix Correction with 
xing angles

Response matrix:

Seems like due to feed down 
the response matrix approach 
treating all orders separately 
fails to correct RDTs
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