

## **ESRF** | The European Synchrotron



# Design, commissioning and operation of the collimation for the ESRF-EBS

I.FAST Low Emittance Rings Workshop 2024 13-16 February 2024

Reine Versteegen On behalf of ESRF-EBS Team



- ESRF used to operate with distributed losses and no dedicated beam dump area before the upgrade project
- The ESRF storage ring upgrade required to minimize modifications on the radiation shielding (request from the French Nuclear Safety Authority, ASN)
- □ Preliminary calculations showed that without a strategy for beam losses collimation
  - **Tunnel roof** shielding would have to be re-enforced
  - Lead would be added on the walls
  - **New access policy** with the extension of interlocked area, and forbidden access to the tunnel roof during operation
- Goal of the collimation project in 2014
  - maintain the non exposed worker policy at ESRF
  - ensure the validation of the upgrade project by the ASN





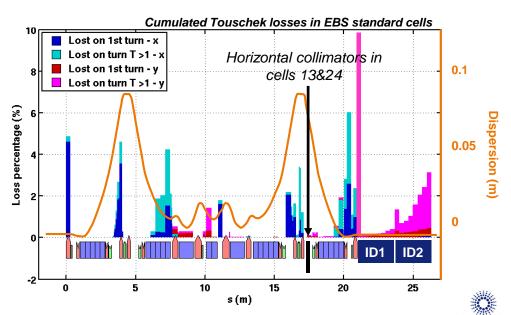
- I. Collimators design
  - Specifications (beam losses, radioprotection)
  - Mechanical design
- II. Collimation and EBS Commissioning
  - ESRF restart
  - Collimation efficiency
- III. Collimation and Machine Operation
  - Collimators tuning and protection
  - Impact on machine operation safety



## I. Collimators design



### I.1. COLLIMATION SCHEME (1/2)


Objective: localize beam losses in well shielded areas for radiation protection

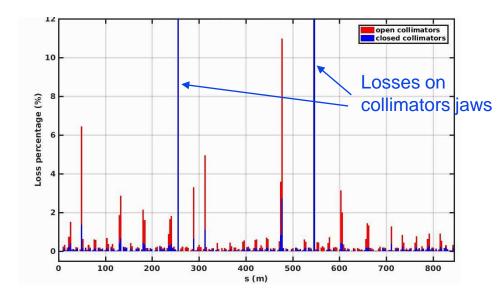
□ Focus on **Touschek scattering** as the main limitation for beam lifetime

- Particle tracking: beam losses concentrated in the straight sections
- High risk of Insertion Devices demagnetization

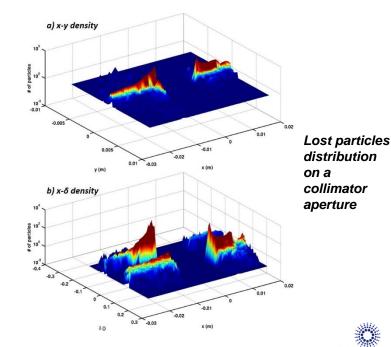
 $\rightarrow$  Additional motivation for collimation

- Collimators intercept off-momentum particles before their transfer to the vertical plane thanks to the dispersion bumps
- Residual gas interactions: collimators can intercept off-energy electrons (Bremsstrahlung) but have poor efficiency on large angle scattered particles without affecting strongly the lifetime (elastic scattering)




The European Synchrotron

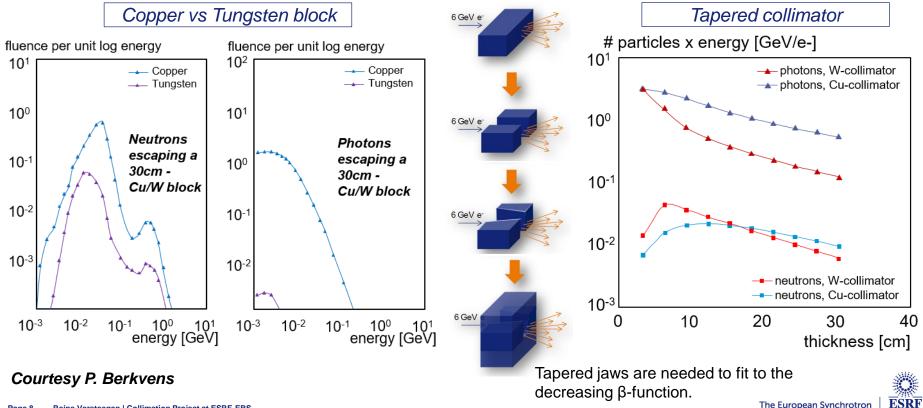
## I.1. COLLIMATION SCHEME (2/2)


Ref [1], [2], [3]

Objective: localize beam losses in well shielded areas for radiation protection

- □ Tracking of Touschek lost particles
- $\rightarrow$  80% of losses relocated in 2 horizontal collimators in dispersive regions, impact on lifetime < 10%



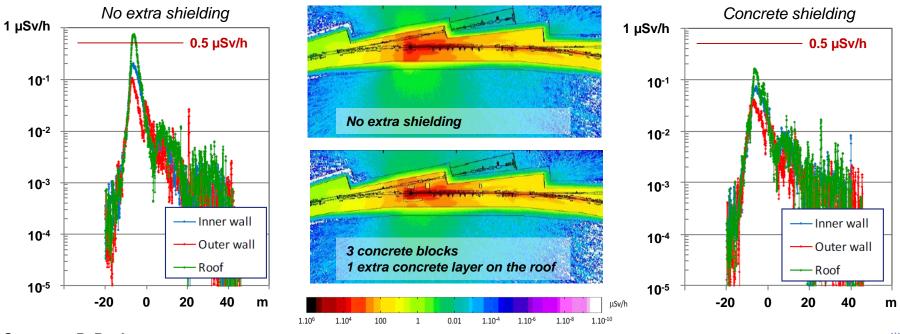

GD coordinates of lost electrons as input for shielding simulations (decay, beam loss, injection...)



## I.2. RADIATION PROTECTION (1/2)

Objective: maintain free access in the experimental hall for all workers

□ FLUKA simulations : material and geometry optimization for neutrons and photons shielding




## I.2. RADIATION PROTECTION (2/2)

**Objective:** maintain free access in the experimental hall for all workers

□ FLUKA simulations : radiation dose outside the tunnel < 0.5 µSv/h

shielding for normal loss, injection, full beam loss

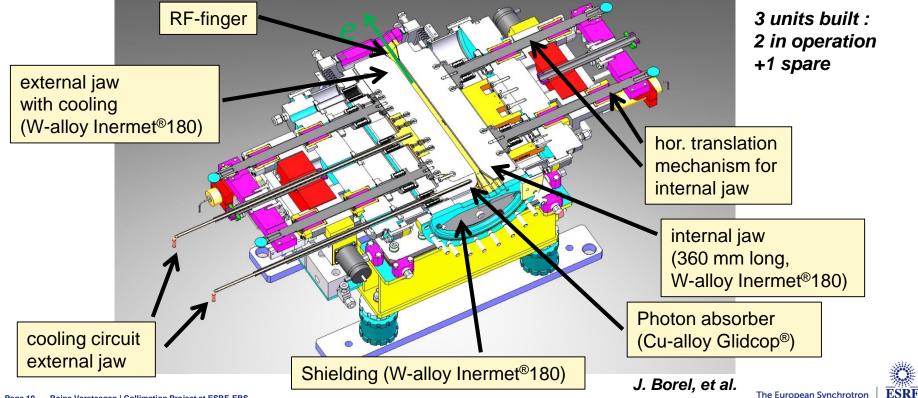


Courtesy P. Berkvens



Ref [4], [5], [6]

#### I.3. MECHANICAL DESIGN (1/3)

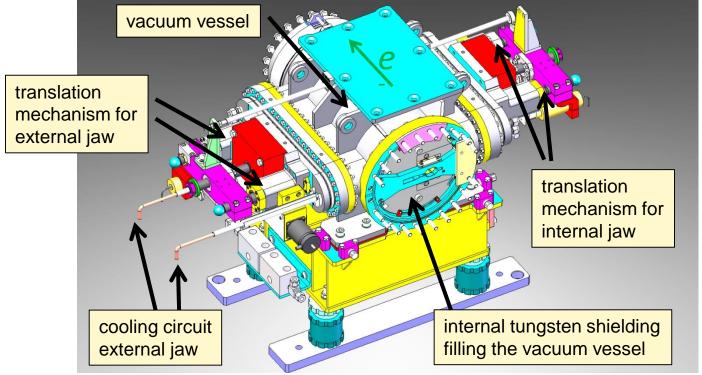

#### **Challenges:**

- compactness
- movable blades

- photon absorber integration

Ref [7], [8]

- cooling
- smooth RF transitions omega-rectangular shaped aperture

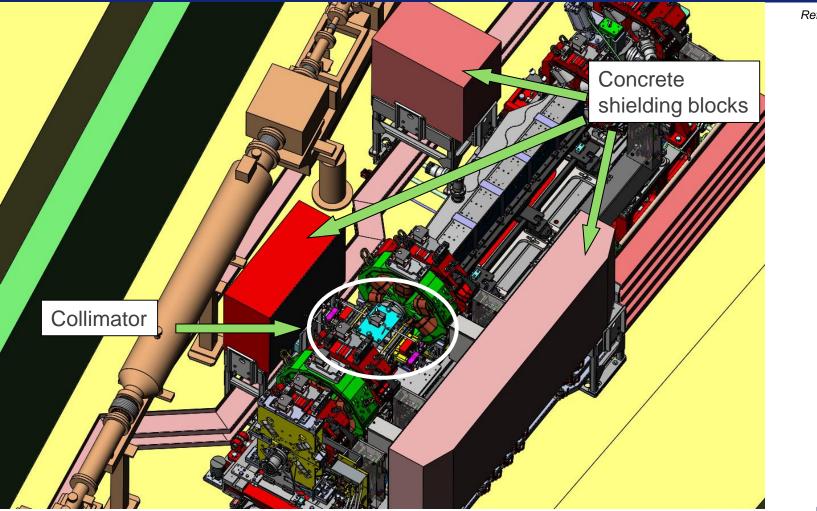



#### I.3. MECHANICAL DESIGN (2/3)

#### **Challenges:**

- compactness
- movable blades

- photon absorber integration
- cooling
- smooth RF transitions omega-rectangular shaped aperture





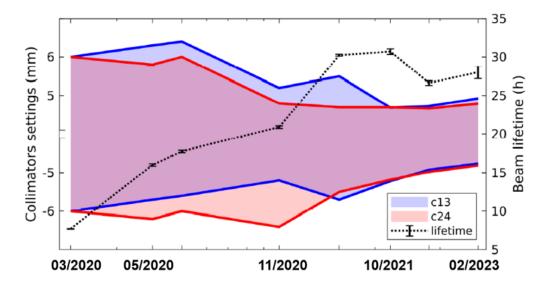

The European Synchrotron

Ref [7], [8]

## I.3. MECHANICAL DESIGN (3/3)






Ref [7], [8]

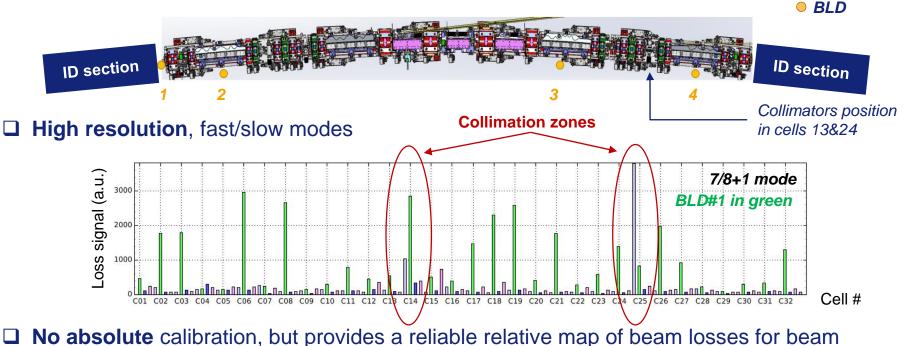
#### **II.** Collimation and EBS Commissioning



#### **II.1. FIRST YEARS OF OPERATION**

- □ January 2020 : First months of machine commissioning done with **symmetric intermediate** collimators' settings, open IDs gaps, strong vacuum losses
- Sept. 2020 : Start of users mode, reduced beam current in high intensity per bunch mode, constraints on ID minimum gaps depending on Beam Loss Detectors signals
- Mid. 2021 : Touschek dominated losses, automated collimators tuning procedure and stabilization of the blades' positions




Collimators position versus beam lifetime in uniform mode during EBS start of operation



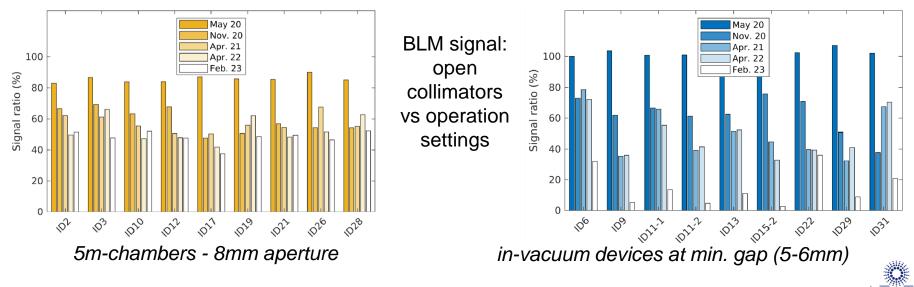
Ref [9],[10]

#### **II.2. BEAM LOSS DETECTORS**

Four scintillators-based detectors per cell, i.e. 128 units around the ring



No absolute calibration, but provides a reliable relative map of beam losses for b modes and cell to cell comparisons,


References and commissioning done before the long shutdown for EBS, with BLM#1 at the same position, same environment behind IDs



Ref [11]

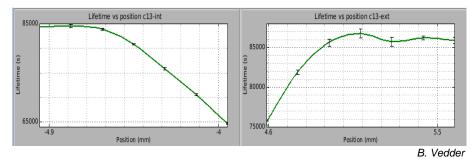
#### **II.3. COLLIMATION EFFICIENCY**

- □ Quantified using the **signal of BLM#1** (smallest vertical aperture zones)
- □ Between 95% and 50% signal reduction depending on location and shielding environment
- □ No gain in 5m-chambers since Touschek dominates over residual gas interactions
- Different behavior for in-vacuum IDs depending on ID gaps and machine tuning direct scraping and shielding of the electromagnetic shower by the device itself



ESRF

#### **III.** Collimation and Machine Operation




## **III.1. COLLIMATION AND MACHINE OPERATION**

Ref [12]

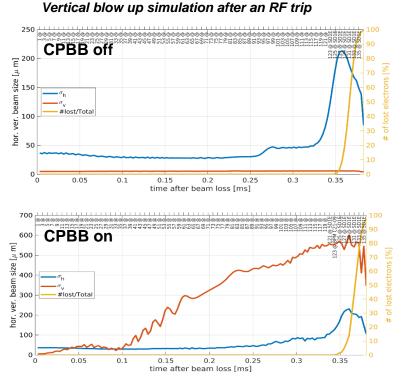
 Collimators scans done after each machine tuning (change of beam mode)

> → share losses on 4 jaws → keep lifetime reduction < 10% → do not affect injection efficiency

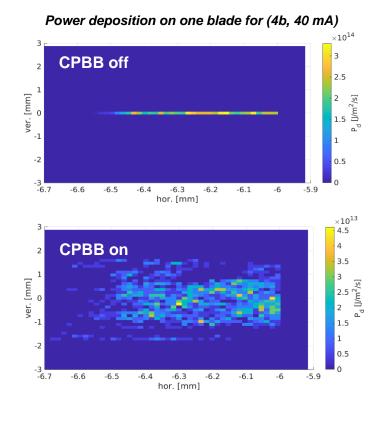


#### Validation of shielding computations with radiation measurements

- $\rightarrow$  stored beam decay,
- $\rightarrow$  losses at injection,
- $\rightarrow$  beam dump on collimators
- No intervention allowed on collimators, one spare ready to install if needed


| FLUKA model                          |                      |                      | Measurements                                                                 |                                                                              |
|--------------------------------------|----------------------|----------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                      | 1 <sup>st</sup> week | 2 <sup>nd</sup> week | 1 <sup>st</sup> week                                                         | 2 <sup>nd</sup> week                                                         |
| background<br>(0.11 nSv·h⁻¹)         | 1.463 μSv            | 1.584 μSv            |                                                                              |                                                                              |
| dose during decay                    | 1.062 μSv            | 1.150 μSv            |                                                                              |                                                                              |
| dose during injection                | 0.210 μSv            | 0.217 μSv            |                                                                              |                                                                              |
| total neutron dose<br>on tunnel roof | 2.735 μSv            | 2.951 μSv            | collimator 1: 3.05 μSv<br>collimator 2: 2.56 μSv<br>average: <b>2.81 μSv</b> | collimator 1: 2.67 μSv<br>collimator 2: 3.24 μSv<br>average: <b>2.95 μSv</b> |

Neutron detector measurements versus FLUKA simulation in April 2021 (collimator cells, 196mA, 24h lifetime) (P. Berkvens)

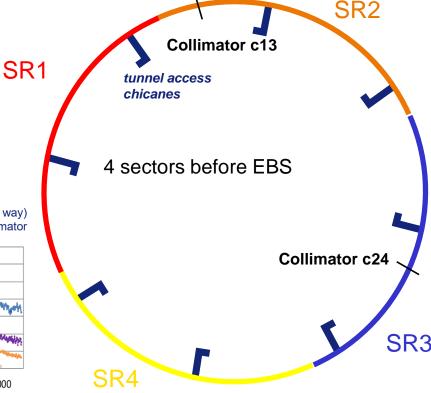

The European Synchrotron

#### **III.2. COLLIMATORS PROTECTION**

#### □ Collimator Protection Beam Blower system for interlocks and uncontrolled beam losses → fast vertical blow up with dedicated shaker to spread the energy deposition



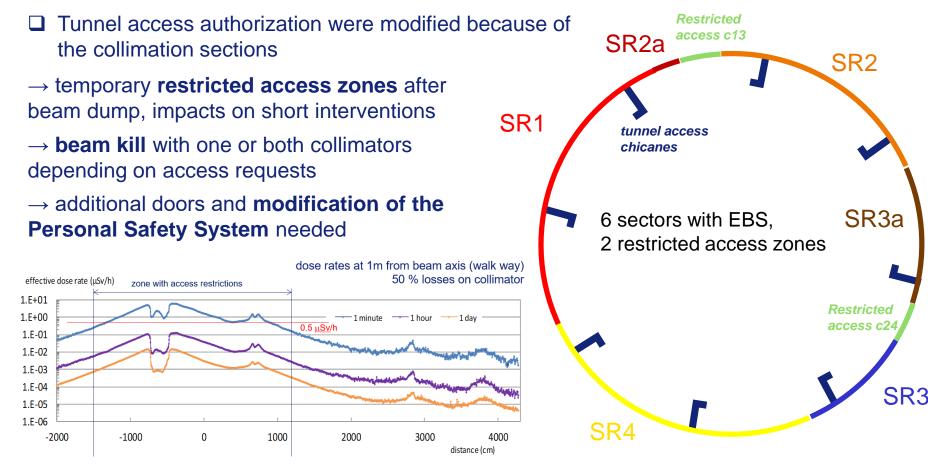
Courtesy S. Liuzzo, B. Roche






#### **III.3. TUNNEL ACCESS**

- Tunnel access authorization were modified because of the collimation sections
- $\rightarrow$  temporary **restricted access zones** after beam dump, impacts on short interventions
- $\rightarrow$  **beam kill** with one or both collimators depending on access requests
- $\rightarrow$  additional doors and modification of the Personal Safety System needed








#### Courtesy P. Berkvens

#### **III.3. TUNNEL ACCESS**





The European Synchrotron

- The shielding study for ESRF-EBS design required a detailed simulation of beam loss processes
- □ In addition to the safety motivation, the **protection of Insertion Devices** became a strong argument in favor of beam collimation
- □ ESRF collimators have been designed to guarantee the non exposed worker condition (dose < 0.5µSv/h) on the roof and outside the ring tunnel during operation, while minimizing the impact on machine operation</p>
- Beam losses monitored in the tunnel showed a good convergence of the collimation efficiency as the vacuum conditioning was progressing
- Beam losses levels are **comparable** as measured in the previous machine
- Radiation measurements in operation validate the shielding model and hence the collimation and shielding design





#### Thank you for your attention

Thanks to all people involved from the Beam Dynamics, Diagnostics, Mechanical Engineering, Safety, Vacuum Groups



Page 23 Reine Versteegen | Collimation Project at ESRF-EBS

#### REFERENCES

- [1] Electron beam losses mapping, R. Versteegen et al., IPAC 2015
- [2] Collimation Scheme at ESRF, R. Versteegen et al., IPAC 2015
- [3] Electron Beam Losses and Collimation at ESRF-EBS, R. Versteegen, LER 2016
- [4] Preliminary shielding results for the ESRF storage ring upgrade, P. Berkvens, RadSynch 2015
- [5] Shielding design study for the ESRF EBS project, P. Berkvens, RadSynch 2017
- [6] FLUKA code, https://fluka.cern
- [7] Collimator for ESRF-EBS, J. Borrel et al., MEDSI 2018
- [8] Diagnostics Chambers and Collimation, F. Ewald et al, ESRF MAC17, 2018
- [9] Commissioning of the hybrid multibend achromat lattice at the European Synchrotron Radiation Facility, P. Raimondi *et al*, Phys. Rev. Accel. Beams 24, 110701, 2021
- [10] Protection of Insertion Devices against Radiation Damage at ESRF-EBS, R. Versteegen et al, IPAC 2023
- [11] New Beam Losses Detector System for EBS-ESRF, Laura Torino et al, IBIC 2018
- [12] The ESRF Extremely Brilliant Source (EBS), P. Berkvens, P. Colomb, RadSync 2023
- [13] EBS Collimator Protection System, S. Liuzzo et al, to be published