

Collimation studies for FCC-ee

<u>A. Abramov¹</u>, K. André¹, M. Boscolo³, G. Broggi^{1,2,3}, R. Bruce¹, X. Buffat¹, M. Hofer¹, P. Kicsiny^{1,4}, T. Pieloni⁴, S. Redaelli⁴

¹ CERN, Meyrin, Switzerland ³ INFN-LNF, Frascati, Italy ⁴ LPAP, EPFL, Lausanne, Switzerland

I.FAST Low Emittance Rings workshop, CERN, Switzerland – 16/02/2024

Many thanks to:

M. Boscolo, H. Burkhardt, F. Carlier, A. Ciarma, Y. Dutheil, P. Hunchak, G. Iadarola, R. Kersevan, A. Lechner, G. Lerner, L. Nevay, M. Moudgalya, K. Oide, A. Perillo Marcone, R. Ramjiawan, T. Raubenheimer, S. White, F. Zimmermann

Collimation for the FCC-ee

- The FCC-ee is the FCC first stage e+e- collider
 - 90.7 km circumference, tunnel compatible with the FCC-hh

 - The stored beam energy reaches 17.5 MJ for the 45.6 GeV Z mode, which is comparable to heavy-ion operation at the LHC

The FCC-ee presents unique challenges

- Such beams are highly destructive: a collimation system is required
- The main roles of the collimation system are:
 - Protect the equipment from unavoidable losses
 - Reduce the backgrounds in the experiments

Comparison of lepton colliders

Damage to coated collimator jaw due to accidental beam loss in the SuperKEKB – T. Ishibashi (talk)

FCC-ee collimation system

- Two types of collimation foreseen for the FCC-ee:
 - The beam halo (global) collimation
 - Synchrotron Radiation (SR) collimation near the IPs
- Halo collimation in a dedicated insertion
 - Two-stage betatron and off-momentum collimation systems in one insertion
 - Ensure protection of the aperture bottlenecks in different conditions
 - Collimation optics (M. Hofer) and collimator parameters (G. Broggi)

Synchrotron radiation collimators around the IPs

- 6 collimators and 2 masks upstream of the IPs (K. André)
- Designed to absorb SR photons

FCC-ee aperture

- The aperture bottlenecks are in the experimental interaction regions (IRs)
 - Depend on the optics, layout, and mechanical aperture in the IRs

The bottlenecks must be protected

- The final focus quadrupoles are superconducting and there is a risk of quenches
- The detector is sensitive to backgrounds from beam losses
- The SR collimators and masks are not robust to large direct beam impacts, can also produce backgrounds

Aperture bottleneck for *Z*-operation mode

The momentum acceptance is the

 A/D_x

 $\delta = A/D_x$, where A is the mechanical

and $\mathbf{D}_{\mathbf{x}}$ is the dispersion

M. Hofer

0.05

0.04

0.03

0.02

0.01

0.00

aperture

 $\delta_{acceptance}$

FCC-ee halo collimation

- New collimation system optics and settings
 - Based on a triple double doublet (tridodo) scheme by M. Hofer
 - Designed to maintain optimal collimator phase advances at acceptable mechanical gaps and flat β-functions at primary collimators
 - Compatible with the new V23 layout, improved dynamic aperture

Name	Plane	Material	Length [cm]	Gap [σ]	Gap [mm]	δ _{cut} [%]
TCP.H.B1	н	MoGr	25	11	6.7	8.9
TCP.V.B1	V	MoGr	25	65	2.1	-
TCS.H1.B1	н	Мо	30	13	3.7	6.7
TCS.V1.B1	V	Мо	30	75	2.2	-
TCS.H2.B1	н	Мо	30	13	5.1	90.6
TCS.V2.B1	V	Мо	30	75	2.5	-
TCP.HP.B1	н	MoGr	25	18.5	4.2	1.3
TCS.HP1.B1	н	Мо	30	21.5	4.7	2.1
TCS.HP2.B1	н	Мо	30	21.5	26.7	1.6

Beam halo collimator parameters and settings

Note: 25 cm primary collimators adopted (FCC week 23 talk)

V23, tridodo_572 collimation optics, https://gitlab.cern.ch/mihofer/fcc-ee-collimation-lattice

G. Broggi

FCC-ee beam loss scenarios

- The FCC-ee will operate in a unique regime
 - Electron / positron beam dynamics and beam-matter interactions
 - Stored beam energy exceeding material damage limits
 - Superconducting final focus quadrupoles, crab sextupoles, and RF cavities
 - Must study the beam loss processes and define the ones to protect against
 - Must study the equipment loss tolerances, for both regular and accidental losses
- Important loss scenarios for particle tracking studies:
 - Beam halo >>>> Current studies

 - Beam tails from Touschek scattering and beam-gas interactions
 - Top-up injection
 - Failure modes (injection failures, asynchronous dump, others)

Setting up studies, Inputs required to set up models

FCC-ee collimation simulation setup

- The FCC-ee presents unique challenges for collimation simulations:
 - Synchrotron radiation and magnet strength (optics) tapering to compensate it
 - Complex beam dynamics strong sextupoles in lattice, strong beam-beam effects (Beamstrahlung)
 - Electron/positron beam particle-matter interactions
 - Large accelerator 91 km beamline, efficiency is crucial
- Xsuite + BDSIM (Geant4)
 - Benchmarked against other codes for FCC-ee (<u>JINST report</u>)
 - Used for for the latest FCC-ee collimation studies
 - Tests / benchmarks in other machines:
 - LHC (FCC-ee optics meeting talk) G. Broggi
 - PS (<u>NDC section meeting talk</u>) T. Pugnat

Current study: beam halo losses

"Generic beam halo" beam loss scenario:

- Specify a minimum beam lifetime that must be sustained during normal operation
 - Preliminary specification of a **5 minute** lifetime
- Assume a slow loss process halo particles always intercepted by the primary collimators
- The loss process is not simulated, all particles start impacting a collimator
 - Track the particles scattered out from the collimator and record losses on the aperture
- Currently using 1 µm impact parameter as standard
 - Selected to give a conservative performance estimate
 - Impact parameter scans ongoing

Impact parameter scan (Z mode) tridodo_572

Beam halo losses for the Z-mode

- The Z mode is the current focus (Beam 1, 45.6 GeV, e⁺),
 17.5 MJ stored beam energy
- The 5 minute beam lifetime \rightarrow total loss power 58.3 kW

3 cases considered: - Horizontal betatron losses (B1H) Vertical betatron losses (B1V) Off-momentum losses $\delta < 0$ (B1-dp)

• For the off-momentum case, using a tilted collimator, aligned to the beam divergence

- Good loss cleaning performance performance observed
 - Minimal losses on the final focus quadrupoles in all scenarios
 - Residual losses on superconducting crab sextupoles

Z-mode betatron and off-momentum halo loss maps

•

Beam halo losses for the Z-mode

- The beam collimation system shows significant loss suppression
 - More than 99.96% of losses contained within • the collimation insertion PF
 - Almost no losses reach any of the IRs ٠
 - Energy deposition studies and thermo-٠ mechanical studies are required for the collimators and most exposed magnets
- Collaborative studies ongoing: •
 - SR collimation • (K. Andre, FCC Physics Workhsop talk)
 - Detector backgrounds ٠ (A. Ciarma, FCC week 23 talk)
 - Impedance (M. Migliorati, FCCIS 23 talk) ٠
 - Energy deposition & thermomechanical studies ٠ (G. Lerner, A. Frasca, R. Andrade)
 - Studies provide input to a detailed, iterative ٠ design effort

Z-mode betatron halo loss maps for selected regions

IP

68000

68010

68020

Warm

Collimator

Cold

Z-mode losses on SR collimators

- The SR collimators intercept losses for all cases
 - Highest load on C0 vertical and BWL horizontal SR collimators, up to 2.6 W
 - Lowest load on C2 horizontal and vertical SR collimators

Z mode impact parameter scan

- Using 1 µm impact parameter, but also studying the sensitivity with impact parameter scans
 - 5×10^6 primary particles tracked for 700 turns at each step
- The new lattice and collimation system demonstrates lower losses across the board
 - Most likely due to the new collimation insertion optics and better resulting dynamic aperture (M. Hofer)
 - Absence of a clear critical impact parameter b > 0 um, which presents challenges for modelling
 - Surface roughness effects not considered can play a role for b $\lesssim 0.1 \mbox{ um}$

Collimation and beam-beam effects

- Interactions at the IPs have a crucial role in FCC-ee beam dynamics
 - Beamstrahlung, radiative Bhabha scattering, beam-beam kicks
 - Main contribution to the beam lifetime in nominal operation
 - Produce distinct beam loss distributions around the ring

- See P. Kicsiny, FCC Physics Workshop 2023 talk
- EPFL-led effort, part of a CHART-funded FCC software collaboration project
- Recent benchmarks show good agreement with established tools
- The models are modular and can be combined with other studies
- Goal: integrate beam-beam effects in collimation tracking studies
 - Long-range loss distribution from spent beam
 - Effect of beam-beam interaction on distributions during collimation tracking

Swiss Accelerator Research and Technology

FCC-ee Z-mode spent beam losses

- Study for the first time collimation with beam-beam integrated
 - Full non-linear lattice, crab-waist, detailed aperture and collimator models, radiation and tapering, weak-strong beam-beam, Beamstrahlung, and Bhabha scattering in 4 IPs
- Initial run carried out:
 - Clockwise beam 1 (positrons), 45.6 GeV
 - Track a matched Gaussian beam of 10⁷ primary positrons from IPA for 500 turns
 - Equilibrium beam-beam emittance and bunch length, no coupling
 - Cumulative loss over 500 turns is ~1%, <u>check in detail</u>:
 - The full aperture and collimator model, worse DA and MA due to inclusion of the collimation insertion optics, and the lack of vertical emittance generation from the lattice likely play a role
 - Only the loss distribution along the ring is considered, the lifetime from the simulation is not used:

cannot estimate the lifetime from this simulation

Z-mode spent beam losses

- Lost particles accumulated to obtain loss maps
 - The loss maps are scaled to the combined nominal beam lifetime from lattice, SR, beamstrahlung and luminosity
- Significant losses observed on SR collimators
 - Large losses on the vertical SR.C0 collimators in PD, PA and PJ ٠
 - Up to 3.4 kW on a SR collimator, investigate the source •
- These are first preliminary results; detailed analysis will be carried out

 10^{5}

 10^{4}

 10^{3}

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 $[\mathsf{M}]$

Р.

A. Abramov | Low Emittance Rings workshop 2024

Lifetime for the Z mode, K. Oide talk

Lifetime $(q + BS + lattice)$	[sec]	10000
Lifetime $(lum)^b$	[sec]	1330

Z-mode spent beam losses

- The high losses on SR collimators are in the vertical plane
- The losses are driven by a strong blow-up in the vertical
 - This blow-up is not expected
 - Check in detail settings for the beam-beam elements and the crab sextupoles
- While preliminary, the first results demonstrate the feasibility of combining collimation and beam-beam studies in the same model

An aside: Z-mode laser intensity control losses

- In the FCC-ee, mismatched bunch charge in collisions can lead to a 3-D flip flop instability
 - Leads to a fast blow-up of a full bunch, charge asymmetry tolerance <5%
 - Control of bunch intensity with laser Compton scattering has been proposed (F. Zimmermann, IPAC'22)
 - First studies using **Xsuite + Cain + Collimasim** (I. Drebot, M. Hofer):
 - Modulated turn-by-turn laser interaction in a full model with lattice, aperture, and collimation system
 - On-line particle tracking, laser interaction, and loss location recording
 - Concept studies for the Z mode ongoing, full studies to follow

I. Drebot et al, IPAC'23

Open questions

Single-beam backgrounds

- Efforts to model tail formation due to beam-gas, Touschek, and thermal photon
- Only long-range effects considered, local losses studied by the MDI and FLUKA teams

Injection and extraction protection

- Local protection devices will be challenging for the FCC-ee no ramp, tight margins, high power density
- Need to study how these devices fit in the collimation hierarchy
- In contact with ABT and FLUKA experts about this

Additional protection

- Tertiary collimators in the IRs or additional local protection collimators may be required
- Need to systematically study failure modes and loss sources
- Alternative collimation system design
 - Adaptation of the system to the new LCCO optics by P. Raimondi
 - Non-linear collimation a-la SuperKEKB, spoiler-absorber configuration, halo depletion mechanisms
 - Explore different options as the design and specification advances

FCC-ee collimation summary

- Studies of IR beam losses and collimation for the FCC-ee
 - The collimation system design is available, including beam halo and SR collimators
 - Adapted to the latest layout and lattice baseline, new collimation optics implemented
 - Crucial beam loss scenarios identified, with studies ongoing:
 - Beam halo losses studied for the most critical Z mode, no show-stoppers identified
 - Improved collimation performance with respect to the previous baseline
 - Ongoing collaboration with the MDI, impedance, injection/extraction, engineering, FLUKA studies teams
 - First integrated beam-beam and collimation studies
 - Preliminary results available, but further studies are required
- Next steps
 - Study other beam loss scenarios top-up injection, beam-gas, failure scenarios
 - Obtain input for the equipment loss tolerances superconducting magnets, collimators, other
 - Energy deposition studies required for magnets, collimators, and masks
 - Tolerance of the detectors to backgrounds required
 - Study all beam modes
 - Explore synergies with other machines SuperKEKB, EIC, DAΦNE, Light sources

Thank you!

