

Felix Armborst on behalf of the SLS 2.0 Team :: Synchrotron Beam Dynamics :: Paul Scherrer Institute

Machine Interlock and Beam Abort System for SLS 2.0

9th Low Emittance Rings Workshop at CERN, Geneva, February 16th, 2024

- 1. Introduction
 - 1.1. The SLS Beam Abort System
 - 1.2. The SLS 2.0 Beam Abort System
- 2. Interlock Systems
 - 2.1. Overview Schematic
 - 2.2. Machine Interlock System (MIS)
- 3. Beam Abort System
 - 3.1. Dedicated Dump
 - 3.2. Energy Deposition
 - 3.3. Loss Distribution
- 4. Losses
 - 4.1. Continuous Loss Distribution
 - 4.2. Overall Loss Distribution
 - 4.3. Risk for Permanent Magnets
- 5. Conclusion

Introduction: The SLS Beam Abort System

- Concept
 - RF phase inversion
 - Decelerate beam
 - Dispersive orbit
 - Distributed losses at restrictive apertures
 - Septum blade
 - High-dispersion TBA-arcs
- SLS machine protection main aspects
 - Synchrotron radiation
 - Beam loading

Introduction: The SLS 2.0 Beam Abort System

Tracking simulations for RF phase inversion show

- Loss localization at IVU & SC superbend (Arc 1, 2, 6, 10)
- Fragile, 1 mm copper vacuum chamber
 - RF phase inversion beam dump not applicable
- Coasting beams lost after 300 turns (RF trips)
- Decelerated beams lost in 100 turns (PSYS interlocks)
 - Beam dump delay < 100 μs required</p>
 - → Fast beam dump controller bypassing slow PLCs

Destructive potential of stored beam

- 400mA @ 2.7GeV (from 2.4 GeV) = 1 kJ beam energy
- Emittance 157 pm (from 5500 pm)
- APS tungsten scraper experiments (2 kJ)
- SPring-8 Injection chamber vacuum leak with low-emittance optics (4 kJ)
 - Dedicated kicker and dump for "bunch painting"
 - → Stored beam itself becomes machine protection aspect like synchrotron radiation and beam loading

Courtesy of M. Aiba

PAUL SCHERRER INSTITUT

Interlock Systems: Overview Schematic

 \rightarrow For fast systems the total delay time from failure detection until completion of the interlock beam dump must be less than 100 μ s

Interlock Systems: Machine Interlock System

The Machine Interlock System (MIS)

- Monitors the sensors and provides beam permits to the actuators
- Storage ring sensor signals in the tunnel are combined via profinet for each sector
- Extrapolating from experience with the SLS MIS, 90 dumps / year are expected during user operation

Beam Abort System: Dedicated Dump

The dedicated beam dump is located upstream of the thick septum in the injection straight

- Additional shielding block for thick septum magnets.
- Dedicated beam dump made of copper
- Bunches spread along outside edge
- Integrated dual pump ports

Beam Abort System: Energy Deposition

Beam Parameters			ightarrow Dump kick	er pulse spreads bunches over 331 mm on the beam dump	
	$E \\ \sigma_x \\ \sigma_y$	$2.7{ m GeV}\ 35{ m \mu m}\ 11{ m \mu m}$		2.8 2.79 2.78 2.77 2.77 2.76 2.76 2.75	2500 [mu]2000 [mu]200
		FLUKA	Formula* [1]	× 2.74 2.73 2.72 2.71	1000 qe 500 G
5 nC single B	Bunch	~ 2300 J/cm ³	~ 3530 J/cm ³	2.7 392.7 392.75 392.8 392.85 392.9 392.95 393 z [cm]	E o
400 mA store	d	~ 1000 J/cm ³	~ 588 J/cm ³	Energy density –5 μm < y < 5 μm, Δx = 20 μm, Δz = 100 μm	° cm ³]
*Angle of incidence and super-imposition of multiple bunches and their particle showers not taken into account				3.5 2.5 2.5 1.5 0.0 X 000 nC, 480 bunches	10 ³ 10 ² 10 ¹ 10 ¹ 10 ¹ 10 ⁰ 10 ¹ 10 ⁰ 10 ¹ 10 ⁰
\rightarrow No heat diffusion (<1 μ s)				380 385 390 395 400 405 410 z [cm]	Ene

[1] M. Borland, J. Dooling, R. Lindberg, V. Sajaev, A. Xiao, "Using Decoherence to Prevent Damage to the Swap-Out Dump for the APS Upgrade", in Proceedings of 9th IPAC, 2018, Vancouver, BC, Canada

Courtesy of M. I. Besana

 \rightarrow Neglecting heat of melting 3.6 kJ/cm³ is limit

Beam Abort System: Loss Distribution

 \rightarrow Interlock beam dump loss distribution remains unchanged for horizontal or vertical orbit distortions of 500 µm peak to peak.

Losses: Continuous Loss Distribution

Inklusive loss map (Touschek, Bremss, Gas) for user operation with / without horizontal and vertical collimators at 5L and 9L

- Total Lifetime of 8 hours
 - With SC 3HC (2.6 x bunch lengthening)
 - Touschek scattering (Lifetime ~11.7 hours)
 - Gas scattering (Lifetime ~35 hours)
 - Bremsstrahlung (Lifetime ~90 hours)
- Loss of 1200 mA per day
 - Due to finite beam lifetime
 - Stored beam of 400 mA
 - Frequent-refill Top-Up Scheme every 3 min

Losses: Overall Loss Distribution

	Dump *	Lifetime	Total
Lost beams per year	~ 210	~ 846	~ 1058
Lost charge per year	36 µC	338 µC	422 µC
Collimators 9L	< 1 %	17.4 %	13,9 %
Collimators 5L	< 1 %	12.1 %	9,7 %
Thin Septum Blade Outer Thin Septum	< 1 % 8 %	13.4 % < 1 %	12,3 %
At Beam Dump	86 %	< 1 %	17,1 %
At Thick Septum	5 %	< 1 %	1 %
Elsewhere	< 1 %	57 %	45,7%

Beam loss distribution between the hotspots excluding the fraction lost "elsewhere"

* = ~90 interlock beam dumps

+ ~70 beam dumps after/before user operation

+ ~50 during machine development

Losses: Risk for Permanent Magnets

- Defining a safe / tolerable neutron fluence limit for permanent magnets is difficult
- Radiation damage demagnetization mechanisms complex with many variables
- Conservative limit following this plot (we use NdFeB)

> 10¹² n/cm²

Demagnetisation as a function of neutron fluence in various experiments. Plot originally shown in EPAC'2006 paper "65 MeV Neutron Irradiation of Nd-Fe-B Permanent Magnets" by X.-M. Maréchal et al (THPCH135) and updated in CLIC – Note – 1079 by Ben Shepherd.

Losses: Risk for Permanent Magnets

Conservative Loss Approximation (Lifetime = 8 h, Beam Current = 400 mA, top up every 3 min)

- \rightarrow 1200 nC lost per day = 7.5e12 electrons per day
- \rightarrow 57 % lost at non-hotspots
- ightarrow assume even distribution to each arc (1/12)
- \rightarrow assume even distribution to each bend (1/7)
- \rightarrow add 4e5 electrons per s from collimators

- =4.9e7 electrons per s
- =4.1e6 electrons per s
- = 5.8e5 electrons per s
 - = 9.8e5 electrons per s

Courtesy of M. Aiba and R. Ganter

^{=8.6}e7 electrons per s

Losses: Risk for Permanent Magnets

Courtesy of M. I. Besana

Machine protection architecture for SLS 2.0 compared to predecessor

- Substantially faster
- More sophisticated interlock beam dump procedure
- Better post mortem diagnostics

Losses for the SLS 2.0 compared to predecessor

- More concentrated loss regions due to
 - Low dispersion arcs MBA design
 - Use of collimators in storage ring
- > No critical degradation to permanent magnets over lifetime of accelerator

PAUL SCHERRER INSTITUT

Thank you for your attention And many thanks to my colleagues

- Masamitsu Aiba
- Maria Ilaria Besana
- Romain Ganter
- Jonas Kallestrup
- Martin Paraliev

Swiss Light Source - SLS

Swiss Light Source - Upgrade Project SLS 2.0

- Maintained
- Circumference 288 m
- Straights
 - **3** × Long
 - **3** × Medium
 - 6 × Short
 - Total Length ~80 m
- Beam Current 400 mA
- Almost Maintained
 - Source Point Positions |shifts| < 70 mm
- Improved
 - Emittance 157 pm (from 5500 pm)
 - Energy 2.7 GeV (from 2.41 GeV)

- APS tungsten scraper experiments (2 kJ) [1, 2]
- SPring-8 Injection chamber vacuum leak with low-emittance optics (4 kJ)
 Controlled beam dump with dedicated kicker, dump and "bunch paintin"

[1] J. Dooling & M. Borland, Energy Deposition in the APS-U swap-out dump and discussion of whole beam loss, Technical

Workshop on Injection and Injection Systems, August 28-30, 2017, Berlin, Germany

[2] Advanced Photon Source Upgrade Project, Final Design Report, May, 2019, Chapter 2: Accelerator Upgrade, 2-2.9 Beam

Dumps and Collimation, 2-2.9.4 Whole-beam dump, P.42

PAUL SCHERRER INSTITUT

SLS 2.0 Interlock Beam Dump - Requirements

Tracking simulations show

- Unfortunate loss loca
 - → RF phase invers
- RF trip causes beam
 - → Beam dump de
 - → Fast beam dum

Destructive potential of sto

- Emittance 157 pm (fr
- 400mA @ 2.7GeV (fr
- APS tungsten scraper

and SC superbend

systems required

• SPring-8 Injection chamber vacuum leak with low-emittance optics (4 kJ) [3]

Controlled beam dump with dedicated kicker, dump and "bunch painting"

[3] H. Tanaka et al., Top-Up Operation of SPring-8 Storage Ring with Low-Emittance Optics, Proceedings of EPAC
 2006, Edinburgh, Scotland, THPLS034
 Felix Armhorst | Machine Interlock and Beam Abort System for SLS 2 0 | 9th Low Emittance Rings

Introduction: The SLS 2.0 Beam Abort System

- SLS interlock beam dump concept
 - **RF** phase inversion
 - Decelerate beam
 - Dispersive orbit
 - Distributed losses at restrictive apertures
 - Thin septum
 - High-dispersion TBA-arcs
- Machine protection main aspects
 - Synchrotron radiation
 - Beam loading

- SLS 2.0 interlock beam dump concept
 - Fast Beam Dump Controller
 - Bypass slow PLC systems
 - Dedicated Dump Kicker
 - Bunch painting
 - Dedicated Beam Dump
 - Localized losses

- Machine protection main aspects
 - Synchrotron radiation
 - Beam loading
 - Stored beam

Losses: Collimation Concept

- Main tasks
 - Catch mis-injected beams
 - Mitigate hot spots from
 - gas scattering at small gap and high beta undulators
 - Touschek scattering in arcs
 - Protect
 - IDs
 - RF
- Collimation efficiency
 - 42.9 % overall including thin septum aperture
 - Short range losses dominate for Touschek- and Gas-Scattering
 - No space for collimator in dispersive region

Machine Protection: Collimation Collimator Positioning

- No space in dispersive regions in arc sections
- Use long straights 5L and 9L with each
 - 2 hor. Collimators, aperture equivalent to the Injection septum
 - 2 ver. Collimators, aperture equivalent to 4-mm full undulator gap
 - Design based on simplified & smaller ESRF-EBS collimators

Courtesy of R. Ganter

Radiation Protection: Interlock Beam Dump

Dose on thick septum permanent magnets

- $10^7 << 10^{15}$ neutrons / cm²
- Total average dose < 0.1 Gy

Radiation Protection: Interlock Beam Dump

Dose outside Tunnel

- Dose outside SLS bunker dominated by neutron contribution. Total escaping energy ~1%. No shielding yet.
- Limit outside inner and outer wall: 20 µSv/week

Courtesy of M. I. Besana

Radiation Protection: Collimation Collimators in X05L - Dose on Downstream UE36

Radiation Protection: Collimation

Collimators in X05L - Dose Outside Tunnel

- Dose on tunnel roof varies with construction but $\sum < 1 \mu Sv/hour$ (Limit is ~10 $\mu Sv/hour$).
- RF cavity assumption (14 μSv/week) based on maximum from measurements fluctuating by factor 3.

Courtesy of M. I. Besana

Beam Dump Controller - LLRF Input

CPCI-serial crate of one SR LLRF system

LLRF FPGA + Software

Detection scheme:

- RF Interlock: Fast
- Others filtered, filter times and thresholds expert configurable

BDC

30 mA / 24 V

→Input circuit

Current source:

Beam Dump Controller - Orbit Monitoring

Bad situations

- RF trip (e.g., arc detected)
 - \circ ~ Coasting Beam lost after 300 μs in 2-3 turns
- Failure of superconducting superbend
 - $\circ~$ 60 mrad, decay in ~ca. 30 s \rightarrow 2 μrad / ms
 - \circ Critical limit at ~1 % \rightarrow 0.6 mrad \rightarrow reached after 300 ms

Catching corresponding orbit errors

- With only new SLS 2.0 DBPM3
 - $\circ~$ 20 kHz \rightarrow 100us \rightarrow 0.2 uRad << 0.6 mRad
 - $\circ \quad 1 \text{ MHz} \rightarrow 2 \text{us} \rightarrow 4 \text{ nRad} << 0.6 \text{ mRad}$
- With mix of old BPM and new DBPM3
 - 4 kHz sampling rate, 1 kHz bandwidth, 1 ms \rightarrow 2 μ rad
 - \circ too slow for RF trip !

Courtesy of R. Ganter

Machine Interlock System - Magnet Temperature

- **Concept:** PT-100 Temperature sensors are cast into the coils
- Each sensor is individually wired to and monitored by the MIS
- Front and rear view:

Courtesy of M. I. Besana