

Equilibrium Emittances for FCC-ee: **Tracking and Matrix Methods**

T. Pieloni, M. Seidel

November 2023

École polytechnique fédérale de Lausanne

EPFL Overview

- Introduction to equilibrium emittance simulations and previous efforts
- FCC-ee software framework
- Summary of recent efforts
- Benchmarking equilibrium emittance simulations with lattice errors
- Emittance with relaxed optics

Introduction to equilibrium emittance simulations and previous efforts

Background and Motivation

- Equilibrium emittance in lepton machines depends on balance between
 - Radiation damping
 - Quantum excitation
 - Dependant on dispersion
- In an flat error free machine
 - Horizontal dispersion occurs from bending magnets \rightarrow Horizontal emittance
 - No vertical dispersion and zero emittance
- Vertical dispersion occurs from
 - Direct **dispersion sources** e.g. magnet errors and correctors
 - **Coupling** sources e.g. solenoid or magnet errors
- Precise determination of vertical emittance required in simulation and measurement due to impact on luminosity

EPFL Equilibrium Emittance Simulations

Previous Efforts

- Benchmarking and improving MADX
 - Validation of MADX matrix method for error free machine
 - By benchmarking with tracking studies with MADX and SAD
 - Validation of summation methods in MADX by comparison to matrix methods
 - Addition radiation integrals added to MADX
- Efforts to use summation methods to predict contribution of errors on magnet groups
 - Compared against matrix methods

<u>*T. Charles et al.*</u>, Alignment & stability challenges for FCC-ee

Software Framework

EPFL Software Framework and XSuite

- Multiple codes exist for different types of studies in the FCC-ee collaboration
 - Even multiple codes and methods for emittance calculations
 - E.g. MADX, SAD and most recently Xsuite
 - Varying degrees of maturity and focus
 - Used and maintained by different experts and institutions
- FCC-ee software framework aims to
 - Make interaction between different effects/simulation types possible
 - Work with the community to create new tools for FCC-ee
- Many efforts to develop and use Xsuite for FCC-ee studies
 - Aims to cover a wide range of simulations
 - **Python** based code built with modularity in mind
 - Many experts contributing to development
 - Requires comprehensive benchmarking studies

EPFL Software Framework and XSuite

10

Summary of recent efforts in XSuite

EPFL Synchrotron Radiation in XSuite

- Tracking feature allows for emittance from tracking
 - Requires tapered lattices and accurate quantum emission
 - Benchmark quantum emission spectrum to theory
 - Tracking results of error-free lattices benchmarked against design emittance
 - Benchmarking of more complex lattices underway
- Recent addition of matrix methods
 - Full benchmarking underway

EPFL Testing Matrix Methods with Vertical Wiggler

- Vertical wigglers offer a simple way of introducing vertical emittance
 - No coupling between planes
 - · Dispersion bump closes on itself
 - No alteration of **optics**
- Strong test case for robustness of matrix methods
 - Currently see small (few %) deviation
 between matrix and tracking
 - Investigation whether this is in line with other codes underway
 - · More details in talk by G. ladarola

EPFL Vertical Wiggler and Beam-Beam Studies

- Vertical wigglers can be used to introduce "lattice emittance" for beam-beam studies
 - Understand the effect of beam-beam blowup
 - Set targets for "lattice emittance"
- Aim to replicate SAD simulation by K. Oide using Xsuite
 - Details presented by P. Kicsiny
 - Very good agreement
- Initially emittance matched in MADX and converted
 - Inconsistencies, probably due to definitions
 - under investigation
- Instead, wiggler strengths set in Xsuite
 - Lattice emittance determined from tracking without beam-beam

14

Equilibrium emittance with lattice errors

Displacement Errors

- Vertical displacement errors lead to vertical emittance growth
 - Vertical dispersion due to misaligned quadrupoles
 - X-Y **coupling** due to misaligned sextupoles
- Big step towards realistic simulation of machine
- Check accuracy of different codes
 - SAD matrix and tracking
 - XSuite matrix and tracking
 - MADX matrix
- Once checked could combine with other effects such as beam-beam

Displacement Errors – Method

- Compute magnet errors using python for 500 seeds using modified version of M. Hofer's fccee_xample_error_tracking repository
 - Modified to translate errors to SAD
 - Truncated Gaussian with $\sigma = 2 \times 10^{-9}$ m vertical alignment errors of quadrupoles and sextupoles
- Apply errors to **tt lattices** in all three codes
- Taper lattices using **native tapering** in all three codes
- Compute the emittance using the matrix methods provided by all three codes
- Track a test particle for 5000 turns in SAD and Xsuite
 - Compute emittance from average beam sizes over 5000 turns

Displacement Errors – Tracking

- Extremely good agreement in emittance distribution from 500 seeds
 - Obtained by tracking in SAD and Xsuite
- More natural to plot logarithm of emittance – normally distributed
 - $Log(\epsilon_{SAD}) = -35.36 \pm 1.07$
 - $Log(\epsilon_{XSuite}) = -35.33 \pm 1.06$
- Also extremely good agreement between emittance obtained from individual errors seeds
 - Small disagreement probably due to randomness of **quantum excitation**
 - Disagreement decreases with increasing turns

Displacement Errors – Tracking

- Extremely good agreement in emittance distribution from 500 seeds
 - Obtained by tracking in SAD and Xsuite
- More natural to plot logarithm of emittance – normally distributed
 - $Log(\epsilon_{SAD}) = -35.36 \pm 1.07$
 - $Log(\epsilon_{XSuite}) = -35.33 \pm 1.06$
- Also extremely good agreement between emittance obtained from individual errors seeds
 - Small disagreement probably due to randomness of **quantum excitation**
 - Disagreement decreases with increasing turns

Ratio between tracked SAD and Xsuite emittance using identical errors

EPFL Displacement Errors – Matrix Methods

- Matrix methods from the two codes show similar distributions as tracking
 - Not as close as the tracking results in both codes
 - $Log(\epsilon_{SAD}) = -35.36 \pm 1.07$
 - $Log(\epsilon_{Suite}) = -35.33 \pm 1.06$
 - $Log(\epsilon_{SAD_matrix}) = -35.86 \pm 1.00$
 - $Log(\epsilon_{Suite_matrix}) = -34.47 \pm 0.90$
 - SAD seems to underestimate, Xsuite overestimate
- Similar trends seen for individual seeds

EPFL Displacement Errors – Matrix Methods

- MADX emit module only gave sensible numbers for very few seeds and the lattice without errors
 - This could be linked to the **tapering** implantation
 - Past studies relied on performing it at 1GeV and scaling up with energy
 - Shown to be in good agreement with SAD matrix module
 - This is not practical for tracking
 - Aim to replicate this to check matrix methods
 - Further exploration underway

Improve and further benchmark XSuite

- Investigate behaviour of newly implemented Xsuite matrix method to determine possible improvements
- Explore different kinds of errors and benchmark between tracking codes
- Use tools to study properties of the machine
 - Provide reference sample cases a starting point for other point to facilitate complimentary studies by collaborators
 - Launch studies that compute emittance from beam-beam and full lattice errors
 - Develop and build on existing tools to correct machine and tune emittance with realistic errors

Speaker name

22

Emittance with Relaxed Optics

EPFL Relaxed Optics

- Relaxed optics aim to increase β* in order to reduce β in the rest of the IR
 - Matching scripts for this produced and in optics repository
 - No rematching of sextupoles!
- Previously shown that errors on IR magnets have a disproportionately large impact on emittance
 - Investigation whether relaxed optics could tune emittance
- Simulation with 100 seeds with and without relaxed optics

EPFL Relaxed Optics

- Relaxed optics aim to increase β* in order to reduce β in the rest of the IR
 - Matching scripts for this produced and in optics repository
 - No rematching of sextupoles!
- Previously shown that errors on IR magnets have a disproportionately large impact on emittance
 - Investigation whether relaxed optics could tune emittance
- Simulation with 100 seeds with and without relaxed optics

EPFL Relaxed Optics Emittance

- Tracking with quantum excitations not possible due to non-adjusted sextupoles
 - Even without errors
 - Even when **sextupoles** uniformly **scaled** to match chromaticity
- Simulations performed using SAD and matrix methods
- No significant improvement in vertical emittance
 - $Log(\epsilon_{nominal}) = -36.3 \pm 4.4$
 - $Log(\epsilon_{relaxed}) = -36.5 \pm 4.4$

- Study of vertical emittance and tuning critical to the performance of the machine
 - Multiple methods and tools exist to determine and tune the emittance
- Three most commonly used tools tested against each other
 - Xsuite tracking in excellent agreement with established methods
 - Opens the door for broader studies in the spirit of the software framework
 - Further benchmarking to understand limitations in all codes
- First studies of emittance with relaxed optics performed
 - Further work needed to understand shortcomings
 - Other studies to be done e.g. dynamic aperture

