Welcome from INFN CSN1

Roberto Tenchini INFN Pisa

FCCIS 2023 WP2 Workshop Rome 13 November 2023

SEZIONE DI PISA

A WARM WELCOME TO ROME

INFN is ...

a community of over 6,700 people

~ 25% of them have PhD grants, post-doc scholarships and research grants

Staff Researchers 699 Staff Technologists 447 Technicians, Administration 960 Associates 4503

INFN Reasearch lines ("the five Scientific Committees")

research lines

Future <u>High Energy Physics projects at accelerators with</u> INFN involvement

- High Luminosity LHC
 - ATLAS, CMS phase 2 upgrades (CSN1)
 - LHCb phase 2 upgrade (CSN1)
 - ALICE phase 2 upgrade (CSN3)
- The Future Circular Collider (FCC)
 - FCC-ee (CSN1)
 - FCC-hh (CSN1)

- Electron Ion Collider (CSN3)
- Neutrinos at FNAL (CSN1)
 - Short Baseline neutrino (SBN)
 - Long Baseline neutrino (LBN)
- Hyper Kamiokande (HK) (CSN2)
- Muon Collider studies (CSN1)

Smaller scale projects: AMBER, BELLE 2 upgrade, HIKE, MEG2, MU2E, etc.

(purple=already approved projects)

Number of FTEs, CSN1 (particle physics)

Research lines CSN1 2024	FTE (%)	Budget (%)
Physics at hadron colliders (LHC)	50,71	50,19
Neutrino Physics	9,10	12,6
Flavour Physics (with LHCb)	27,11	22,45
Charged Lepton Physics	5,73	8,95
Proton Structure	2,61	2,46
R&D for Future Accelerators	3,76	3,01
Dark Sector	0,99	0,34

Specific INFN funds for future accelerators are also available, in addition to CSN1 budget

1

2

3

4

5

6

7

Preparing the future: FCC

CSN1: RD_FCC

170 scientists/25 FTE

~ 6-700 k€/yr (CSN1 & EU grants)

In 2022 INFN started the efforts to boost participation and include the INFN accelerator community, in synergy with other projects

- SC magnets
- RF cavities
- etc

Specific INFN funds for future accelerators started in 2023: 2 million euros over 3 years, with additional postdoc positions

- FCC-ee IR and MDI
- High-Q/High-G SRF
- SRF R&D thin films
- Damping Ring and Transfer Lines

WHY FCC ? a particle physicist point of view

Precision Measurements $\leftarrow \rightarrow$ Discoveries: a research programme adressing the next decades should must be wide-ranging, have a high-profile programme of measurements and considerably extend the search for new phenomena \rightarrow Explore the landscape, do not leave stones unturned

Where nature decided to put stuff (the electroweak playground)

Some key points about FCC

• FCC-ee is not just about brute-force luminosity

- <u>Continuous calibration of centre-of-mass energy</u> (e.g. 100 keV at the Z) with resonant depolarization
- <u>Direct measurement of parameters</u>, which were computed until now (e.g. direct measurement of α_{QED} running)
- There is a well-defined theory effort, to successfully use data in a meaningful way (e.g. 3-loop calculations)
- It has been shown in various ways (e.g. EFT analyses) that a jump in precision in Z, W, H, top measurements is required for a comprehensive interpretation of the electroweak sector
 - A deviation of a single coupling or operator will not provide the full picture
- FCC-hh is eventually required to precisely investigate the Higgs self-coupling, to close important chapters (e.g. WIMP interpretation of Dark Matter) and to significantly extend direct searches

Beyond Standard Model, Precision Measurements, Discoveries: a robust mediumto long-term research programme must address most aspects of of precision measurements (and their correlations) in addition to direct searches.

Summary

INFN is paying a special attention to the preparation for the future of our field

- Focusing on the **feasibility of FCC** (FCC-ee followed by FCC-hh):
- «A first class infrastructure to maintain the leadership of European research in particle physics over the 21st century»

We wish you a fruitful workshop !!